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Abstract

This paper focuses on fault-related uncertainties in the subsurface,

which can significantly affect the numerical simulation of physical pro-

cesses. Our goal is to use dynamic data and process-based simulation

to update structural uncertainty in a Bayesian inverse approach. We

propose a stochastic fault model where the number and features of

faults are made variable. In particular, this model samples uncertain-

ties about connectivity between the faults. The stochastic 3D fault

model is integrated within a stochastic inversion scheme in order to

reduce uncertainties about fault characteristics and fault zone layout,

by minimizing the mismatch between observed and simulated data.

The stochastic fault model uses a priori information such as fault

orientation, location, size and sinuosity, to sample both geometrical

and topological uncertainties with realistic fault descriptions. Each

fault object is parameterized by the random vector used to simulate

fault features. Then, during inversion, the random vector of the current

model is stochastically perturbed, producing a new parameter vector

used as input by the stochastic fault model to produce a new model.

Even if the topology varies from one model to another, the algorithm

produces correlated models so that their flow responses evolve quite

smoothly.

The methodology is applicable in general and illustrated on a syn-

thetic two-phase flow example. A first set of models is generated to

sample the prior uncertainty space. Then, models minimizing reference

water-saturation data misfit are used as seeds to generate continuous

Markov chains of models with discrete states. Posterior models re-

duce uncertainties about fault position, while the topology varies from

one model to another. A second example highlights the interest of

the parameterization when interpreted data is available, by perturbing

geological scenarios and falsifying those that do not match two-phase

flow observations.
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1 Introduction

In subsurface studies, uncertainties about faults and fault network primar-

ily stem from the lack or poor quality of observation data. Due to the

inherent uncertainties and possible human bias during interpretation of ge-

ological data (Bond et al., 2007), model predictions seldom match physical

observations such as reservoir pressure, seismograph measurements or grav-

ity anomalies. One may want to use such data to infer some characteristics

of the model, which is known as the inverse problem.

In this paper, we propose a general method to reduce structural uncer-

tainty about fault networks. The method generates models with varying

number of faults, fault geometry and fault connectivity, i.e. how faults

truncate each others. The method accounts for large to small scale faults

(km to decameter scale), for which uncertainties may be large due to the

lack of data (incomplete sampling or sensing), imaging ambiguities (e.g. in

potential field and seismic methods), limited resolution and positioning er-

rors (borehole trajectory, time-to-depth conversion, etc.). Therefore, in the

context of hydrocarbon reservoir management, our method is applicable at

several stages :

• In exploration of “green fields”, in which a limited amount of data is

generally available (a set of seismic lines, a few borehole data). In this

case, we focus on large-scale, kilometric faults or larger.

• In “brown field” management, in which 3D seismic data is generally

available but only provides approximate view on structures because of
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resolution, acquisition or processing issues. In this case, the method

is applicable to aid the interpretation of large to mid-scale faults in

poorly imaged areas or to simulate sub-seismic faults following geolog-

ical priors.

In such uncertain situations, the method mainly relies on prior informa-

tion about faults, which may come from the interpretation of available data,

structural geological concepts, regional context or reservoir analogs.

We apply this method to the inversion of reservoir or hydrogeologic flow

data. Indeed, faults impact fluid flow in different ways:

1. Individually, faults have a direct impact on the permeability field due

to fracturing, alteration, cementation or shale smearing nearby the

fault. Uncertainties about fault rock hydraulic properties in flow mod-

els are generally high and may have a significant impact on fluid flow

(Manzocchi et al., 1999).

2. At the reservoir scale, fault zone complexity and spatial layout directly

impact fluid flow by creating connected flow conduits or flow barriers

isolating fault blocks, depending on the nature of the fault rock. In

this paper, we focus on uncertainties about fault layout and geometry

including fault connectivity uncertainties.

3. The displacement of geological layers along fault surfaces perturbs

both the horizontal and vertical connectivity of transmissive layers.

3D structural models that represent geological layers and structures

such as faults are of prime importance for accurately representing fault

displacement, trends, anisotropy of permeability and porosity hetero-

geneities. The rock properties greatly depend on the nature of the

rocks, thus are often estimated in a coordinate sytem representing the
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depositional space (Mallet, 2004; Gringarten et al., 2008).

The proposed methodology considers geological structures as a reduced

set of parameters, thus opens the ways to the management of structural

uncertainty in classical stochastic inversion methods like MCMC (figure 1).

A simple non-conditional case study (section 5.1) shows the applicability of

the proposed parameterization to reduce fault location uncertainty using a

rejection sampler. Indeed, the goal is to sample the posterior distribution

and obtain very different realistic models, hence rejection sampling is more

appropriate than optimization techniques.

In sparse data situations, several fault arrays may be interpreted, all con-

sistent with available data. In this context, we propose to perturb geological

scenarios while maintaining consistency with interpreted data, in order to

falsify scenarios that do not match two-phase flow observations (section 5.2).

2 Related Work and Challenges of Structural Pa-

rameters Inversion

The inverse problem is known as history matching or model calibration in

the case observed data is the reservoir/aquifer dynamic flow response. The

idea behind inverse modeling is obvious: if a model does not reproduce the

observations, it is unlikely that its predictions are correct. Moreover, if a

model matches the observations, it has a higher chance to make relevant

predictions. However, only stochastic approaches provide a relevant frame-

work for risk assessment, by considering all possible scenarios and not just

one deterministic calibrated model.

Most history matching techniques focus on permeability and porosity

heterogeneities, either in the field of hydrogeology (Carrera et al., 2005;
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Figure 1: Typical modeling and inversion workflow. 3D structural model-
ing is based on the interpretation of subsurface data, which may entail uncer-
tainties due to model approximations, sparse/low resolution data and possi-
ble interpretive bias. Once geological structures have been modeled, petro-
physical heterogeneities are computed using geostatistical methods condi-
tionning to subsurface data. Fluid-flow simulation then enables to compute
flow predictions that can be compared to observations. The proposed pa-
rameterization opens the way to inversion strategies by updating not only
petrophysical properties, as proposed by classical inverse methods, but also
3D geological structures.

de Marsily et al., 2005; Zimmerman et al., 1998), or for the hydrocarbon

industry (Oliver and Chen, 2011). Other techniques focus on connectiv-

ity features (Western et al., 2001) or sedimentary objects such as channels

(Ronayne et al., 2008) that may have a great impact on fluid flows by cre-

ating high-conductivity preferred flow paths. However, uncertainties about

geological structures are neglected in most cases. Jenni et al. (2004) pro-

pose to handle uncertainties about fractures using gradual deformations to

update field scale planar fractures while honoring a fracture density map.

In this work, we propose an approach similar to Jenni et al. (2004), but
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use a 3D flexible and more realistic representation of fault objects in terms

of geometry and topology. Suzuki et al. (2008) focus on larger structural

uncertainties. They select models that match reflection seismic data in a

large set of prior structural models using a stochastic search method and

the Hausdorff distance as metric to avoid running the forward problem for

each ensemble member. The prior set of models is generated by perturbing

the geometry of different seismic interpretations representing different geo-

logical scenarios. As Suzuki et al. (2008), we also focus on large structural

uncertainties but our parameterization is flexible enough to automatically

generate models with varying number of faults and fault connections.

Other uncertainties about reservoir boundaries do not only affect reser-

voir volume but also control the spatial layout of geological layers and thus

possibly affect fluid flows. In this context, Seiler et al. (2010) use the Ensem-

ble Kalman Filter (EnKF) to update top and bottom stratigraphic horizons

of a reservoir. They use a corner-point grid to represent the most likely

initial state and deform it to match simulated top and bottom horizons. As

the grid is deformed, their algorithm keeps the same number of cells over

realizations and thus a state vector with same dimensions as required by the

EnKF.

However, none of these methods is flexible enough to sample posterior,

i.e. after data inversion, realistic 3D models of geological structures. Geo-

logical surfaces (faults, fractures or stratigraphic horizons) are either planar

or their geometry is limited by the gridding method, e.g. pillar-based grids.

Our fault representation does not suffer such limitations, for implicit mod-

eling (Calcagno et al., 2008; Frank et al., 2007; Guillen et al., 2008) is used

to represent faults as isopotentials of scalar fields, namely implicit surfaces.
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Inverting structural parameters using dynamic data raises both conceptual

and technical issues:

1. One needs a robust method to sample structural uncertainties. While

it is a common practice to generate several geostatistical realizations of

facies or rock properties, few methods propose to sample uncertainties

about geological structures, either geometrical (Abrahamsen, 1992;

Caumon et al., 2007; Lecour et al., 2001; Mallet and Tertois, 2010; Thore et al.,

2002; Wellmann et al., 2010) or topological (Cherpeau et al., 2010a;

Holden et al., 2003). The algorithm used in this work is adapted from

Cherpeau et al. (2010a) in order to meet the needs of inverse mod-

eling. It generates stochastic fault networks from prior information

about fault orientation, size, sinuosity and location.

2. It is not an easy task to decribe a structural model as a set of relevant

parameters. In this paper, we focus on fault network parameters,

considering both individual fault parameters such as orientation, size

and location and also the number of faults in the model. Connections

between faults are not explicitly parameterized but result from the

fault network generation process (section 3).

3. From a technical standpoint, modeling realistic geological structures

requires a flexible 3D representation while modeling physical phenom-

ena requires meshes for discretization of partial differential equations

describing the physical phenomenon of interest (Caumon et al., 2004).

Consequently, using dynamic data to constrain geological structures

calls for either back and forth and tedious conversions between the two

representations, or a simplified geological representation that only en-

ables to update the reservoir model, as proposed in the seminal work

8



of Holden et al. (2003). Our implicit fault surfaces can be discretized

into a control volumes connectivity graph that can be fed into a flow

simulator (Cherpeau et al., 2011). Hence, the geological representa-

tion does not suffer from any simplifications while the flow response

can be computed from the connectivity graph.

3 Parameterization of Fault Networks

3.1 Overview of the Stochastic Fault Model

The fault generation process is a modified version of the method proposed

by Cherpeau et al. (2010a,b) to sample fault-related uncertainties in sparse

data situations. The algorithm sequentially simulates faults in the domain

of interest. Faults are grouped into fault families representing different fault-

ing events in terms of timing and regional stress, resulting in different input

parameters about fault orientation, size, localization and sinuosity. More-

over, fault families are simulated in a given chronological order reflecting the

timing of faulting events. Consequently, new simulated faults are branching

faults in case of intersections with previously simulated faults. When the

timing is uncertain, fault families are considered cogenetic so that truncation

is randomly simulated.

Each fault object is simulated through a number of substeps and the

global simulation process is as follows:

For each fault family S, from the oldest to the youngest:

For each fault F in S:

1. Draw dip and strike from prior distributions.

2. Draw fault center coordinates from the fault center
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probability distribution function f built from input

parameters (section 3.1.1).

3. Generate a fault geometry from orientation parameters,

fault center and input sinuosity parameters.

4. Draw an extension along the strike direction and along

the dip direction (section 3.1.2).

5. Look for intersections with previously simulated faults.

The simulation can also be conditional to interpreted fault traces. In this

case, extra simulation steps assign data to faults and randomly cluster data

points using geometrical concepts (Cherpeau et al., 2010b). The algorithm

assigns data points to faults in different orders and generates different data

combinations, hence produces different models that all honor hard data. The

following sections describe some substeps of the fault object simulation.

3.1.1 Fault center coordinates

The fault nucleation step is a key step during the simulation process for

it determines the neighborhood of a fault thus possible intersections with

neighbor faults. In some geological contexts, major faults tend to repulse

each other, meaning that new faults occur far from existing ones, whereas

secondary faults tend to occur around major faults. If one wants to mimic

such behaviors, the fault center probability distribution function f may be

non-uniform in the domain of interest and may depend on neighbor faults.

Consequently, the fault center is drawn from f(u, v, w) defined in a Carte-

sian grid, by successive drawing of u ∈ [1;nu], v ∈ [1;nv] and w ∈ [1;nw]

coordinates, with nu, nv, nw the number of voxels along the three orthogo-

nal axis au, av and aw respectively. The probability p(U = a) that the u
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coordinate is equal to a is:

p(U = a) =

∫
v

∫
w

f(a, v, w)dvdw

=

nv∑
j=1

nw∑
k=1

f(a, j, k)

(1)

Once u coordinate has been drawn, p(V = b|U = a) with b ∈ [1;nv] is

computed according to:

p(V = b|U = a) =

∫
w

kf(a, b, w)dw =

nw∑
k=1

kf(a, b, k)

with k a normalization constant,

k =
1∫

v

∫
w
f(a, v, w)dvdw

=
1

nv∑
j=1

nw∑
k=1

f(a, j, k)

(2)

Then, w can be drawn in the same manner, i.e. by computing a discrete

pdf along the axis aw given u = a and v = b coordinates. Continuous

values of these discrete probability density functions are obtained by linear

interpolation between discrete values, that can then be back-transformed

into x, y, z coordinates.

3.1.2 Fault extension

In order to model laterally-terminating and synsedimentary faults, the algo-

rithm restricts the existence of a fault by a 3D ellipsoid E(x, v1, v2, v3) with x

the fault center coordinates, v1, v2, v3 three orthogonal vectors. The vectors

v1 and v2 are respectively computed from extension values randomly drawn

from length distribution along the strike direction and height distribution

along the dip direction. The third vector v3 is fully defined by v3 = v1 × v2.
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This elliptical fault shape is not a restriction of our algorithm and is consis-

tent with the litterature. Indeed, fault’s tipline is considered to be circular

to elliptical for an isolated fault (Barnett et al., 1987; Walsh et al., 2003)

but may evolve to elongated ellipses if the vertical fault height is restricted

by the thickness of a geological layer (Benedicto et al., 2003), which can be

approximated by choosing ||v1|| >> ||v2||.

3.1.3 Fault number parameter

In case of large fault-related uncertainties, not only is the fault connectivity

uncertain but also the number of faults occuring in the studied area. The

algorithm associates, for each fault family, a theorical number of faults n

with a probability of fault existence pe ∈ [0, 1], so that the output number

of faults m varies in [0, n] given the following probability density function

Q(m):

Q(m) =

(
n

m

)
pme × (1− pe)

n−m (3)

The following section presents the parameterization of our stochastic

fault model to fit the needs of an inversion scheme.

3.2 Model Parameterization

The stochastic fault model sequentially simulates faults in the domain of

interest. Each step during the simulation of a fault object stochastically set a

fault parameter. Finally, each fault can be described by six parameters: dip,

strike, length, height, sinuosity and center. During the fault simulation, one

or more random numbers are used by the stochastic steps to generate each

fault parameter, i.e. only one random number is used per dip, strike, height,

length parameters whereas three random numbers are required to draw the

fault center position. Consequently, each fault can be parameterized by a
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vector with eight components F (r1, ..., r8). A model m with n faults is fully

parameterized by a random vector with 8n components m = {F 1, ..., Fn} or

m = {(r11, ..., r18); ...; (rn1 , ..., rn8 )}.

4 Inversion Methodology

The parameterization described in section 3.2 opens ways to inversion schemes

in which geological structures are part of the inversion loop, as shown in fig-

ure 1. In this section, we present how the parameterization can be used

to sample fault networks using two-phase flow response as a misfit to mini-

mize. The inversion scheme relies on a version of the Metropolis algorithm

(Metropolis et al., 1953) proposed by Mosegaard and Tarantola (1995). The

Metropolis algorithm was originally designed to sample Gibbs-Boltzmann

distributions in chemical science and has been since successfully applied in

several fields such as mathematic, physic and biology. It is a Markov Chain

Monte Carlo method, Markov Chain implicitly meaning first-order Markov

chain, i.e. current state only depends on previous state, and Monte Carlo

meaning that it is a random sampling method. The Metropolis algorithm is

an importance sampling algorithm designed to solve highly nonlinear inverse

problems by sampling the posterior probability density function defined by

the product of the likelihood function and the prior probability density func-

tion. A general description of Monte Carlo methods as solutions to inverse

problems can be found in Mosegaard and Sambridge (2002).

4.1 Random Walk

Inverse methods search for solutions that minimize the misfit between pre-

dictions and observations and thus need random walks or perturbation pro-

cesses to explore the parameter space. In this space, the neighborhood of
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point i is defined as all the points j that can be reached from i in a single

move. We define the neighborhood Ni of a model mi(r
i
1, ..., r

i
8n) in 8n-D

search space as the set of all models mj(r
j
1, ..., r

j
8n) that can be obtained

through the following steps:

For each random number rik:

1. Compute blow = max(0, (rik(1 − p))) with p a perturbation amplitude

given in input;

2. Compute bup = min(1, (rik(1 + p)));

3. Define a uniform distribution Dk U [blow, bup];

4. Randomly draw rjk from Dk.

Consequently, the neighborhood Ni corresponds to an infinite set of models.

However, any point B in parameter space can be reached from any point A

provided a sufficient number of steps, i.e. the random walk covers the whole

parameter space. Moreover, the proposed transition process from model i to

model j is symmetric, i.e. the probability p(mi|mj) of moving from model

mj to model mi is equal to the probability p(mj |mi) of moving from model

mi to model mj : p(mi|mj) = p(mj |mi).

For a point i in parameter space, the perturbation amplitude p defines

the size of the neighborhood around i, thus controls the speed of exploration

of the parameter space. Moreover, p reflects the trade-off between exploita-

tion and exploration of the parameter space. Indeed, if p is small, it means

that the algorithm searches for models in a close neighborhood and thus

tries to exploit current position in parameter space. If p is large, the neigh-

borhood is large and thus the algorithms tends to explore the parameter

space. However, high-dimensional spaces tend to be empty spaces and the
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probability of moving from a high-misfit point i to a low-misfit point j may

be high if the move, i.e. the perturbation amplitude p, is too large.

4.1.1 Parameter variation speed

Another way of generating a new model could be to directly perturb the

fault parameters of the current model, i.e. to bypass the statistical distri-

butions. When perturbing random numbers, all numbers evolve at the same

“speed” in the range [0, 1] depending on the input perturbation amplitude

p. Then, each fault parameter is drawn from the corresponding distribution,

meaning that fault parameters evolve at a speed proportional to the spread

of their distribution. Indeed, the narrower the distribution, the slower the

parameter variation speed. Consequently, the method accounts for the prior

information and uncertainty. This could be hardly achieved by perturbing

directly the fault parameters.

4.1.2 Structural parameters evolution

The parameterization and perturbation process described above ensures that

fault parameters evolve smoothly. However, the fault sinuosity is described

by a single random number used as a seed for generating a correlated random

noise using a geostatistical algorithm, e.g. Sequential Gaussian Simulation.

The method is similar to Caumon et al. (2007), the generated random field is

added to the scalar field representing the fault surface. The input variogram

ranges needed for the geostatistical method is computed from sinuosity pa-

rameters. In contrast with gradual deformation methods, the fault sinuosity

does not evolve smoothly since perturbing the seed entails the generation of

a new perturbation field.

Moreover, the fault connectivity is not parameterized as it results from
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the stochastic fault simulation algorithm. However, if two faults are no

longer connected, the fault positions evolve smoothly so that the flow has

a small volume of matrix to pass trough to connect the two disconnected

faults. Consequently, even if some fault connections are lost from one model

to another, the corresponding flow responses are still correlated.

4.1.3 Fault number evolution

Adding or removing a fault from one model to another may entail a large

perturbation of the model predictions, e.g. if the new or removed fault is

localized in a flow-influencing zone, the flow response change may be too

large to consider correlated models. In order to get smooth transitions,

the existence of a fault for a given fault family is coupled with its length

distribution so that the probability of a zero-length fault is 1−pe with pe the

probability of existence. Consequently, the length distribution is modified as

illustrated in figure 2. The ϵ parameter should be chosen carefully in function

of the perturbation amplitude p, for it controls the fault growth/contraction

rate. Indeed, if p is too large as compared to ϵ, the fault may get its normal

size or disappear during one iteration.

4.2 Acceptance Rule

The acceptance rule modifies the random walk (presented in section 4.1) by

introducing a probability pij to move from point i to point j, so that the

posterior probability density function is sampled. We use the Metropolis

rule as the acceptance rule. For each model m, we run the forward problem,

i.e. a flow simulation, and compute some water-cuts wt(m) at production

wells. The misfit function S(m) is the root mean squared error with the

16



0

1

0

1

1- e
ε

0,5

m

m

1- ep

2
- ε

p

0

0

length

length

Figure 2: Fault length distribution coupled with existence probability pa-
rameter. At the top, an initial gaussian CDF representing the fault length
with mean m. At the bottom, the distribution has been modified to ac-
count for the existence probability pe. Parameter ϵ should be carefully set
in function of the perturbation amplitude p.

observations wobs
t :

S(m) =

√√√√√ l∑
t=1

(wt(m)− wobs
t )2

l
(4)

The likelihood function is of the form L(m) = exp(−S(m)
s2

), with s2 the

total noise variance. Then, the probability pij of moving from point i to
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point j is:

pij = 1 if L(mj) ≥ L(mi)

=
L(mj)

L(mi)
otherwise

= exp(−S(mj)− S(mi)

s2
)

(5)

Note that the misfit function could be any function of interest for the

study at hand. We here use it for the two examples presented in section 5.

Moreover, the methodology could be used in other scientific areas. It could

for instance be used in geophysical inversions to better constrain subsurface

structure. In this case, a wave propagation method would replace the flow

simulation during the forward modeling step in the inverse methodology.

5 Applications

5.1 Updating Prior Structural Uncertainty

This case study aims at understanding the behavior of the method for a

simple case and assessing the amount of structural information introduced

by a simple history matching problem. Fault occurence and location are not

constrained by any interpreted data.

5.1.1 Input Data

The studied area of size 1400x1400x200m has one injector and one producer

wells on both sides of a fault zone composed of two fault families:

1. The first fault family corresponds to major faults aligned along the

main flow path:

• strike: uniform, [110− 130]◦

• dip: Gaussian, mean = 70◦, σ = 3◦
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• length: Gaussian, mean = 800m, σ = 50m

• height: Gaussian, mean = 350m, σ = 5m

• number of faults: 3

• probability of existence pe = 0.8

• sinuosity wavelength along strike direction: 500m

• sinuosity wavelength along dip direction: 500m

2. The second fault family corresponds to branching faults:

• strike: uniform, [50− 70]◦

• dip: Gaussian, mean = 70◦, σ = 3◦

• length: Gaussian, mean = 500m, σ = 30m

• height: Gaussian, mean = 300m, σ = 5m

• number of faults: 2

• probability of existence pe = 0.7

• sinuosity wavelength along strike direction: 350m

• sinuosity wavelength along dip direction: 300m

The total number of faults varies in [0,5] according to equation 3. The

matrix has a constant porosity of 0.2 and a constant permeability of 100mD.

Faults are considered flow barriers with a permeability set at 0.01mD, hence

uncertainty about fault transmissibility is not investigated.

5.1.2 Inversion Scheme

The Metropolis algorithm is designed to sample asymptotically the poste-

rior distribution function so that the starting point or seed to generate the

Markov chain of models is meaningless (Mosegaard and Tarantola, 1995).
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Then, after the burn-in time is over, samples of the posterior can be picked

according to a “waiting time” to get independent samples.

To speed up the process, we propose to generate first 2000 samples from

the prior and then to use the 100 models that best match flow data as

seeds for generating 100 independent Markov chains of models using the

acceptance rule described in section 4.2. Each chain stops when the misfit is

below a given threshold or 500 models are generated. This process does not

guarentee unbiased sampling of the posterior distribution, but corresponds

to a practical use of the method in which only models deemed acceptable

are retained for further use.

N

1400m

Figure 3: The reference model has 4 faults. The shaded zone represents
the fault zone thus ensures faults to be inside this zone.

5.1.3 Reference Model and selected models

The reference model is randomly drawn among the 2000 prior models and

is presented in figure 3. Then, the misfit is computed for other prior models

using equation 4 and water-cut data. Results are presented in figure 4.
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The misfit threshold to accept posterior models is set to 10 (from 51 for the

worst of the 100 selected models); only four models are below that threshold

among the 2000 models.

0

20

40

60

80

100

120

Misfit

Number of models
140

Figure 4: Mifsit repartition computed from equation 4. Only the 100
selected models are used as seeds to generate Markov chain of models and
four of them have a misfit below 10 thus are considered as posterior models.

5.1.4 Sensitivity to Perturbation Amplitude Parameter

The perturbation amplitude parameter p controls the exploitation versus

exploration of the parameter space. To test the sensitivity of our methodol-

ogy to parameter p, the best model is perturbed using different values of p.

100 models are generated for each value of p, and their flow-response misfit

is computed and summarized in figure 5. Statistics are almost constant for

small perturbations ranging from 0.0001 to 0.03 maybe due to the impact of

the fault sinuosity seed that generates a new sinuosity whatever the pertur-

bation value. Moreover, maximum values are unexpectedly constant, maybe

due to a fault configuration in unstable state, e.g. a fault center coordinate
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close to a neighbor fault may switch of side even for small changes. Mini-

mum misfit values are also almost constant due to the perturbation process

that does not exclude small perturbations even for large p values. Conse-

quently, we focus on centile values that do not depend on extrem values.

For p ranging from 0.04 to 1, the median misfit increases linearly with a

correlation coefficient of 0.997.

These results greatly depend on prior information, thus cannot be gener-

alized. Indeed, as described in section 4.1.1, the parameters evolution speed

depends on the parameters distribution, e.g. a Dirac distribution always

generates the same value thus the speed is null whatever the perturbation

amplitude is. Given these results, the perturbation amplitude p is set to

0.03 for the case study which ensures small misfit changes while enabling

exploration of the parameter space.

5.1.5 Results

Any perturbation among the fault parameters may entail a fault network

topology change and impact the flow response. Moreover, parameters are

connected, e.g. a change of fault position increasing the distance between

two faults may be balanced by a fault growth decreasing the distance be-

tween the two faults, thus cannot be considered individually. In case the

fault size is small as compared to other faults, changes of fault location or

orientation may entail unsignificant changes in flow response. Consequently,

we propose to compare fault occurence probability maps (figures 6 and 7)

instead of posterior distributions.

Only three Markov chains among the 100 chains did not manage to re-

duce the misfit under the input threshold. An example of misfit evolution for

a seed model is shown in figure 8. The average acceptance rate is about 43%
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for all Markov chains, which is relevant with prior studies (Gelman et al.,

1996; Mosegaard and Sambridge, 2002). Both prior probability maps do not

show any particular feature but a large zone with medium probability. Pos-

terior probability maps show specific features that are present in the two

subsets which suggests relative convergence and stability of results.

Posterior probability maps relatively well resolve fault location uncer-

tainty. A typical realization would have two faults of family A on both sides

of the main flow path and one fault of family B playing the role of flow bar-

rier along the flow path, which is relatively similar to the reference model.

Other faults located elsewhere in the model do not impact the flow response,

which may explain why these areas are not very well resolved on the poste-

rior probability maps. Indeed, any hard data constrains fault location and

the impact of conditioning is still to be evaluated.

5.2 Analysis of Structural Scenarios

The interpretation of subsurface data may lead to different interpretations

(Bond et al., 2007) and thus different geological scenarios. Fluid-flow data

represent additional data that may help to analyze different interpretations

and to falsify those that do not match observations (Tarantola, 2006). In this

section, we propose to analyze different structural scenarios built from the

interpretation of seismic sections by generating a family of models around

each interpretation. The sinuosity and size of each deterministic fault of the

initial interpretation are perturbed. Other fault parameters such as fault

center location and orientation are frozen. The initial interpretations are

used as seeds to generate Markov chains of models as in section 5.1 and

conditioning to seismic interpretations is made during neighborood search.

Only models that match flow data are retained and other interpretations
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are falsified. The study is not meant to be statistical but practical, hence

scenarios that do not have any neighbor model with an acceptable misfit to

water-cut data after a large number of iterations are falsified.

5.2.1 Data Overview

Eight structural scenarios have been built from four interpreted cross-sections,

one of them is considered as the reference scenario (figure 9). There are one

injector in the center and four producers in the corners of the studied area of

size 1400x1400x200m. As in section 5.1, the misfit is the root mean squared

error (equation 4) of water-cut data. Matrix porosity is set at 0.2, matrix

permeablity is 5mD and fault permeability is 0.01mD.

5.2.2 Results

Initial interpretations are perturbed until an acceptable misfit is reached.

This arbritary choice is motivated by a practical need to obtain a match in

limited time, a more rigorous version of MCMC could be run in principle to

better sample the search space, at the expense of computational efficiency.

The evolution of the misfit from one model to another is presented in fig-

ure 10. The average acceptance rate for all scenarios is about 33%. Scenarios

I1, I4, I5 and their corresponding chain of models have a flow-response that

remains far from the reference thus are falsified. Scenarios I0, I2, I3, I6 have

a neighbor model within an acceptable misfit range, respectively I ′0, I
′
2, I

′
3, I

′
6

(figure 11), which are considered consistent with available water-cut data.

Conclusions would have been much different by only considering the ini-

tial interpretations misfit, e.g. interpretations I2, I3, I6 have a larger initial

misfit than falsified interpretations I1, I4, I5.

The low-misfit models I ′0, I
′
2, I

′
3, I

′
6 can then be used for further modeling
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steps with a higher confidence into their corresponding structural models.

6 Discussion and Conclusions

The proposed parameterization of faults enables to sample posterior fault

networks with various number of faults and fault connections. The mod-

eling method uses a realistic 3D representation of fault surfaces that goes

beyond planar elliptical surfaces and enables to model realistic fault arrays.

It considers faults as a random vector corresponding to fault parameters and

opens the way to inversion of geological structures using realistic descrip-

tions. It goes beyond traditional inversion schemes by pertubing both fault

geometry and fault network topology.

The first presented example shows how fault position uncertainty can

be reduced using our parameterization and a version of the Metropolis al-

gorithm to sample posterior models. The sampled 100 posterior models

suggest specific features about fault location. The second example shows

the interest of the methodology when conditioning data is available, by ana-

lyzing structural scenarios and falsifying those that do not have any neighbor

model consistent with observations. The simulation method enables to per-

manently honor data points during the perturbation process, which reduces

the neighborhood around selected scenarios and ensures the consistency of

the proposed models.

The smooth evolution of fault parameters, even for the number of faults

coupled with size evolution, enables to generate correlated flow responses

from one sample to another. Only the fault sinuosity does not evolve

smoothly from one sample to another but gradual deformation could help

to obtain more continuous transitions (Hu, 2000). Other fault-related un-

certainties could be considered to complete the method, such as fault trans-
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missibility which may have a significant impact on the flow response. In

the presented examples, faults occur in a homogeneous geological layer but

rock heterogenetities could also be taken into account. In such cases, fault

displacement should also be modeled for it may connect or disconnect trans-

missive layers. This point will be addressed in a future contribution.

In our first simple MCMC example, the forward problem, i.e. the flow

simulation, represents about 91% of the computation time (about 9% for

fault simulation, the time for discretization and generation of flow input files

is negligible) for an average of 1min20s per MCMC iteration on a 3.4Ghz

PC with about 8000 flow elements and 16000 connections per discretized

model. When complexity increases as in the second example with a larger

number of faults and wells, this computation time is even more important

(about four times longer than first example) even if time proportions remain

relatively constant: the inversion spends 88% of the computation time to

solve flow equations, 12% to simulate faults (maybe due to extra simulation

steps needed for data conditioning, other steps are insignificant). These

performance issues and the large number of parameters do not enable to

rigorously sample the posterior. The presented inversion strategy is parallel

by nature since Markov chains of models can be computed independently,

which reduces the total computation time of the presented examples. Other

methodologies could also be used in order to reduce the computation time,

e.g. Mariethoz et al. (2010) propose a stochastic stopping criterion to re-

duce the number of forward runs. Distance-based optimization (Sambridge,

1999; Scheidt and Caers, 2009; Suzuki et al., 2008) could also be used either

separately or in conjunction with the proposed method for more efficient

sampling.

Interpretations of inversion results are difficult to analyze due to the
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amount of data and correlation between parameters. As argued by Mosegaard and Tarantola

(1995), there is still a need for methods to summarize information and re-

veal specific features of posterior models, that go beyond the computation

of posterior distributions of individual inverse parameters. In that sense,

Wellmann and Regenauer-Lieb (in press) propose to use information en-

tropy to compare results and evaluate uncertainty reduction of geological

units repartition after data inversion.

Beyond practical solutions and issues about the computation cost of

inversions, one may wonder whether the search for fully sampled posterior

distributions is meaningful. In the case of structural modeling, one only

needs some models roughly covering the uncertainty space to continue the

modeling workflow and make predictions. The Metropolis sampler enables

such spread over the posterior probability function that cannot be obtained

with optimization techniques. If other uncertainties are to be taken into

account, e.g. about fault rock properties or fault slip, the empty space

problem becomes even more difficult to handle and calls for much more

models, which makes the computation time quickly becoming unreasonable

in practice.
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Figure 5: Misfit values in function of perturbation amplitude p in logarith-
mic scale. Vertical bars represent interquartile ranges with median value.
For p values ranging from 0.0001 to 0.03, median values are almost constant,
then increase with larger interquartile ranges. Minimum (red squares) and
maximum (green squares) values are almost constant for all p values due to
the perturbation process and maybe unstable fault position.
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Figure 6: Probability maps of faults belonging to family A. Top: the map
corresponds to the 2000 prior models. Middle: posterior models computed
using the inversion scheme from the best 50 models (left) and from the 50
following models (right). The two sets of models show similar characteristics,
i.e. two high-probability areas on both sides of the main flow path. Bottom,
the probability map computed from the 100 posterior models.
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Figure 7: Probability maps of faults belonging to family B. Top: the map
obtained from the 2000 prior models. Middle: posterior models computed
using the inversion scheme from the best 50 models (left) and from the 50
following models (right). Bottom: posterior probability map built from the
100 posterior models. The posterior map highlights an area on the main
flow path which is related to the reference with a fault playing the role of
flow barrier.
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Figure 8: Misfit evolution for one seed model. The Markov chain stops
when the misfit is below the input threshold and the last sample is used to
compute posterior statistics.
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Figure 9: Initial interpretations and reference. Only fault sinuosity and
fault size are perturbed during the inversion scheme, other parameters are
frozen.
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Figure 10: Misfit evolution of seven structural scenarios using a version
of Metropolis algorithm proposed by Mosegaard and Tarantola (1995) and
water-cut data. Scenarios I0, I2, I3, I6 have a neighbor model consistent with
available data. Other scenarios I1, I4, I5 are falsified.
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Figure 11: Left: initial interpretations used as seeds for generating Markov
chains of models. Right: the end-member of each chain, consistent with
water-cut data. Other scenarios did not produce any acceptable model thus
have been falsified.
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