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Abstract

This paper addresses the issue of Naturally Fractured Reservoirs, where fracturation patterns are as-
sumed to be closely related to stress history. Introducing uncertainties on geologic data, we propose to
compute a new stochastic parameter, the Failure Probability, based on geomechanics. This fracture
parameter is then used to simulate 3D fracture density and orientation analogue.

1 Introduction

Natural fractures have dramatic effects on reservoirs in term of oil recovery, because they often con-
trol the hydraulic flow as conductors (open fractures) or barriers (mineralized fractures). An accurate
characterization of fractured reservoirs is needed to build reliable flow models for hydrocarbon ex-
ploration. The first step consists in a static modelling of the fracture network geometry as it affects
considerably the flow.

Predicting the performance of fractured reservoirs requires the characterization of all fracture pa-
rameters such as spacing, orientation, size and aperture. However, none of these fracture attributes
is typically well constrained by available subsurface data either because of the restricted number and
size of accurate samples (1D wellbores data) or because of the indirectness of measurements (3D seis-
mic data). In [9], Ouenes uses neural networks to identify fracture key parameters, whereas Bourne
in [2] proposes to integrate geomechanics in fracture characterization.

Fractures initiation and propagation are mainly due to lithology and local stress distribution (see [7]).
In our approach, geologic observations and rock mechanical properties are combined with a fracture
geomechanics-based model to predict fracture network attributes. Although the stress field history
may only be known after long studies of the field by experts (e.g. regional stress history in [2]), the
global stress field can be evaluated through the knowledge of the strain tensor.

Ideally, if the evolution of stress field and the rock failure conditions were precisely known at each
point of the subsurface, it would be possible to draw an exact picture of the fracture networks. So,
geologic data uncertainties through distribution laws for each rock property are involved into the
geomechanic model in order to characterize fracture key parameters. Based on assumptions on the
values of mechanical rock properties (cohesion, Young's modulus, etc.) and on their uncertainties, a
Failure Probability is computed across the model. Combined with other fracture drivers, such as seis-
mic attributes and layer thickness, this probability will allow to obtafnagture density analogue

that reproduces as well as possible observed well data.

After presenting the theoretical and mathematical basis of this new approach to characterize frac-
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ture networks, the stochastic model of fracturation will be detailed. Then, the problem of fracture
orientation will be tackled in order to build a reliable geological model.

2 Strains and Stresses

Fractures form when rock cannot withstand the in-situ stress anymore and their orientation is con-
strained by the direction of principal stresses. Fracturation patterns thus highly depend on stress
history which is itself related to strain history. The 3D Strain Terggay can be obtained at any point

in the subsurface through two different methods :

¢ 3D balanced unfolding of layers (see [5]),

e evaluation of the total deformations in the "Geo-Chronological space” from deposition time to
present (see [6]).

The Strain Tensor measures the variations of length of any infinitely small véctat locationx.
With the Lagrangian Strain Tensor, used later on, elongations are counted negatively while contrac-
tions are counted positively.

The eigen valuegé&(x), £5(x), £3(x)} of £(X) sorted by increasing magnitude order and their as-
sociated eigen vectordV,(x), Wz (x), W3(X)} are called the Principal Strains and Principal Strain
Directions at locatiorx, respectively. The forces at the origin of the transformation of the undeformed
regionRy into the deformed regio® induce a Stress Tenso(x) whose components can be stored
ina(3 x 3) symmetric matriXo (x)].

If the material is homogeneous, elastic and isotropic, then, according to the generalized Hooke’s
law, the Lagrangian Strain Tensor and the Stress Tensor are linked by the following linear equation
wheretr([€(x)]) represents the trace @f(x)] while A\ and u are the so called “Lak coefficients”
characterizing the elastic properties of the material at location

()] = A-tr([ECJD) - ] + 2p- [E(X)] (1)

This equation implies thgtr(x)] and [£(x)] must have the same eigen vectors. The eigen values of
[0(x)] and their associated eigen vectors are called, respectively, the Principal Sfressgsand the
Principal Stress Direction8W;(x)}, whereW; is also thei'" eigen vector of£(x)]. Still according

to the Hooke’s law (1), the Principal Straifi§;(x)} and the Principal Stressés;(x)} are linked by

the following equation :

0i(X) = A- (&) +EX) +8(X) + 2u-&(x)  Vie{l,2,3} (2)

3 Failure criteria

Many criteria exist to predict failure of brittle materials. Thi®hr-Coulomb criterionis appropriate

to model shear fractures whereas @effith criterion is more appropriate in case of tensile failure

(see [1]). This paper focuses on shear failure.

The Mohr-Coulomb theory assumes that, for the Principal Stresses sueh that, > o3, the in-
termediate principal stress componentdoes not act for the failure. It is based on the hypothesis
that, between the planes having the same normal stress, the weakest is the one having the maximum
tangential stress.
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Figure 1:Mohr-Coulomb’s failure criterion. Failure Figure 2: Mohr-Coulomb’s failure criterion including
occurs when the Mohr-Coulomb’s circle exceeds the uncertainties on the rock properties C, ¢, A and i con-
failure envelope. sidered as Uniform probability laws.

As shown by figure (1), the Mohr-Coulomb’s circle is drawn using the maximum principal stress
component; and the minimum principal stress componesnt The failure envelope is created from
Mohr-Coulomb’s circles for uniaxial tensile strength and uniaxial compression strength. The Mohr-
Coulomb theory states that failure occurs when the Mohr-Coulomb’s circle at a point in the subsurface
exceeds the failure envelope (see [1]). Using geometric terms and defiamthe intern cohesion
andy as the rock friction angle, failure occurs when the distance between the center of the Mohr-
Coulomb’s circle and the failure envelope is smaller than the radius of the Mohr-Coulomb’s circle :

tge - (P5%) + ¢
Vigie +1

Assume now, at any point of the subsurface, that the strain térisgrerfectly known while the Lan
parameters\ and, the cohesion and the friction angle> are realizations of independent random
variablesL(w), M(w), C'(w) and¢(w), respectively. As a consequence, fracturation must now be
considered as a random event and it makes sense trying to evaluate its probability to occérisvhen
known and the probability laws df(w), M (w), C'(w) and¢(w) are given (see figure (2)).

01 — 03 >
9 =

3)

4 A Stochastic Model of fracturation

According to equation (3), it can be observed that :

. o1 — O 1 o1+ o0
{fracturation occurs <= ¢ < 3. 2.

2 oSy 2 tge “)
The Principal Stress Componentsandos; of the stress tensor are deduced from the Principal Strain
Components;, & and&; of the strain tensof through the generalized Hooke’s law (see equation
(2)). Leth(A, u, ¢|€) be the function defined by :

1
h(A €)= (&1 — &) - p- cosp (E1+ &) -ptgp— (&1 +E+E) - A-tgp (5)
Using equations (4) and (5), it can be concluded that fracturation is characterized by the following

equation :
{fracturation occurs <= ¢ < h(\ p,p|E) (6)
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In practice, the propertigs,, u, ¢, ¢) of the material at a given location in the subsurface are not know
with precision. As a consequence, to characterize the fracturation in the subsurface, it may be wise to
use the stochastic model presented in the following.

Stochastic model of fracturation

Knowing the strain tensa® and the probability laws of (w), M (w), C(w) and¢(w) at any point of
the subsurface, thiéailure Probability PF1,4(€) is defined as :

PForme(€) = IP({w € U : fracturation occurs) where(U, A, IP) is a probabilized space. (7)

According to equations (6) and (7) and definiRg as the Cumulative Distribution Function (cdf) of
the random variabl€'(w), it can be observed that :

]P< {w € U : fracturation occurp & {L(w) = A} & {M(w) = pu} & {d(w) = ¢} ) = Fo(h(\ p,0lE))

(8)
Taking into account the independence of the random varidliley, M (w), andé(w), the probability
for fracturation to occur can be computed as follows :

PFouaio(®) = [ Fo(hOuu i) - o) - Fali) - fole) - ddiadi ©)

In practice, the kernel of the integral (9) is not convenient to be integrated analytically and the use of
a numerical integration technique is far more practical to evaluate the failure probatility,,, ().

Two cases have been studied for the computation oF#ikire Probability : one when the distri-

bution laws of the random variables are considered to be Gaussian probability laws (Gauss-Hermite
guadrature technique) and the other for Uniform probability laws (Legendre quadrature technique).
In the following, the results are detailed.

5 Testcase

In order to validate the results obtained with both numerical methods (Gaussian and Uniform prob-
ability laws), a synthetic case and a geological case have been studied. In both models, the material
is assumed to be a homogeneous layer of sandstone and assumptions on the elastic properties of the
rock and on their uncertainties have been made from the well-known geomechanics referenced books
of Goodman [3] and Jaeger [4].

Synthetic case

This case concerns the flexure of a sedimentary layer. As the thickness of the layer is small compared
to its extension, the elastic theory of thin plates can be applied (see [14]). The “Lagrangian Strain
Tensor”£(x) has been deducted analytically from the parametric representation of the thin plate (see
[12]). In our case, the neutral surface has been placed at the bottom of the thin platéaillibe
Probability has been computed on this model for Gaussian and Uniform distribution law types as
shown by figure (4). The results of both numerical techniques are very similar and the difference
between the methods is inferior to 2 percent. Both results are also geologically consistent : below the
white region, strains resulting from the stress field are not major to generate sets of fractures, while
the strains acting in the red region are more likely to provide fracture networks.
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Figure 3: Cross-section of a bent elastic thin ~ Figure 4: a) Maximum Principal Strain computed ana-

plate (R=1000; W=20). Iytically on a deformed thin plate. Comparison of Failure
Probabilities on a thin plate when all properties distribu-
tion laws are Gaussian (b) or Uniform (c).

Geological case

Tests have also been performed on the geological anticline of Split Mountain in Utah (USA), which is
composed of a uniqgue homogeneous layer. To obtain the “Lagrangian Strain Tensor”, a 3D balanced
unfolding has been performed (see [5]). Then, Fadure Probability has been computed still with

both methods : Gaussian and Uniform distribution laws. As shown by figure (5), the results are also
very similar between both numerical approaches (difference between methods is less than 5 percent).
As expected, th&ailure probabilityis higher on the top of the anticline where the extensions forces
are maximal, while it is lower for other less deformed regions.
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Figure 5: Comparison of Failure Probabilities on a geological case (Split Mountain) when all properties dis-
tribution laws are Gaussian (a) or Uniform (b).
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Comparison with Curvature results

Another common technique used to predict fracture characteristics is the computation of curvatures
as in [10]. Curvatures of horizons are used to compute an "index of occurrence of fractures” playing
the same role as owrailure Probability. However, there are some severe drawbacks with such an
approach :

1) Curvatures on surfaces are characterized by 2D tensor while Strain Tensor is 3D: as a consequence,
there is no direct mathematical connection between these two tensors.

2) In the case of an isopach fold, the top and bottom horizons haveathecurvature. However,

the top is in extension while the bottom is in compression. In such a case, the "index of occurrence
of fractures” based on curvatures will be the same whileRhiture Probability will be extremely
different. Figure (6) shows a cross-section of the Split Mountain anticline :Fthkeire Probabil-

ity is higher on top of the anticline which corresponds to usual observations on outcrops while the
curvature does not give any similar information (dissymmetry of the curvature property is due to the
dissymmetry of the 3D structure of the anticline).

3) Curvatures cannot take into account rock types. As a consequence, in a folded stack of alter-
nate isopach layers of carbonates and shales, for example, both rock types will be assigned the same
"index of occurrence of fractures” which is not the case forkagure Probability.

4) Finally, from a mechanical point of view, the direction of fractures can be determined correctly
only if the 3D Strain Tensor is known : the 2D Curvature Tensor cannot provide such an information.

Less fractures in the intrada

Failure Probability property |

Figure 6:Comparison of Curvature and Failure Probability properties for a N-S cross-section at the maximum
of the Split Mountain anticline.

6 Fractures Orientation

Tectonic fractures are those whose origin, on the basis of orientation, distribution, and morphology, is
attributed to, or associated with, a local tectonic event. They are formed by the application of surface
forces. In [8], Nelson has observed that the majority of tectonic fractures in outcrop tend to be shear
fractures. Shear fractures have a sense of displacement parallel to the fracture plane. Aka point
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they form at some acute angle to the maximum compressive principal Stress Dinttien and
at an obtuse angle to the minimum compressive Stress Dirédfig{x) within the rock. They form
parallel to the intermediate compressive Stress Diredti@x). All three principal stresses must be
compressive for shear fractures formation.

Figure 7:Potential fracture planes developed in laboratory compression tests. Extension fractures (A)
and shear fractures (B and C) are shown. After Nelson (2001).

As presented in section (2), the intermediate Stress Dire®tig(x) are known in the undeformed

space (both methods of computation for the strain eigen vectors can be used, either a 3D balanced
unfolding [5] or the Geochron model [6]). Then fracture orientation can easily be determined in the
undeformed space as shown by figure (8a). Finally, a transformation from the undeformed space to
the deformed space allows to represent fracture orientation in the deformed space (see figure (8b)).

Fracture Density

™ High

I Low

Figure 8:Fracture orientation. a) Discrete Fracture Networks simulated in the undeformed space, Top
view (fractures are the black lines). b) Previous simulation transformed to the deformed space, Side
view. In both pictures, the displayed property on cross-sections is the fracture density.

Conclusion and Future Works

Data uncertainties have been integrated into the geomechanics concepts in this approach of fracture
characterization. A new parameter, tralure Probability, has been computed in order to take into
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account the elastic rock properties and the stress field constraining the material for fracture density
assessment. Using a non-linear multi-regression, this probability is combined with other fracture
drivers, such as seismic attributes and layer thickness, to obtain a fracture density analogue that re-
produces as well as possible observed well data. The geomechanical parameters are also used to
determine fracture orientation, a future work about fracture orientation estimation will be to integrate

a stochastic information from the failure criterion. The next investigation of this fracture parameters
study is about fracture size and aperture in order to simulate Discrete Fracture Networks as described
by Souche in [13], and also to deal with tensile fracturation pattern. The obvious final step will then

be the assessment of an equivalent permeability of the fractured media.
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