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Abstract

Stochastic simulation of categorical objects is traditionally achieved ei-

ther with object-based or pixel-based methods. Whereas object-based

modeling provides realistic results but raises data conditioning prob-

lems, pixel-based modeling provides exact data conditioning but may

lose some features of the simulated objects such as connectivity. We

suggest a hybrid dual-scale approach to combine both shape realism

and strict data conditioning. The procedure combines the distance

transform to a skeleton object representing coarse-scale structures,

plus a classical pixel-based random field and threshold representing

fine-scale features. This object-distance simulation method (ODSIM),

uses a perturbed distance to objects, and is particularly appropriate

for modeling structures related to faults or fractures such as karsts,

late dolomitized rocks and mineralized veins. We demonstrate this

method to simulate dolomite geometry and discuss strategies to apply

this method more generally to simulate binary shapes.

Keywords: Geostatistics, Gibbs sampler, Gaussian stochastic process,

Object-based simulation, implicit representation, Euclidean distance trans-

form

1 Introduction

Stochastic simulation is commonly used in various geoscience fields for mod-

eling subsurface heterogeneity. Stochastic simulations aim at generating
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multiple (equiprobable) numerical models, termed realizations, which re-

produce the heterogeneity expected in the reality while honoring available

data (Haldorsen and Damsleth, 1990). The heterogeneity model being repro-

duced is typically described either by a variogram (e.g. Deutsch and Journel,

1998; Goovaerts, 1997; Chilès and Delfiner, 1999), a training image (e.g.

Strebelle, 2002; Arpat and Caers, 2007) or a parametric object model (e.g.

Deutsch and Wang, 1996; Holden et al., 1998; Viseur, 2004; Allard, Froideveaux and Biver,

2006). These methods do not explicitly make assumptions or try to repro-

duce geological processes, for data conditioning would then make stochas-

tic simulation impractical. However, subsurface petrophysical properties are

generally controlled by genetic constraints (e.g., crystallization, sedimentary

processes), followed by secondary transformations (e.g. structural events,

diagenesis, hydrothermal alteration). While the stochastic simulation of sed-

imentary rocks has been widely studied, heterogeneities due to later processes

have received less attention (Labourdette et al., 2007; Boisvert et al., 2008),

except for fractures (e.g. Gringarten, 1998; Srivastava, Frykman and Jensen,

2004). The main motivation of this work is therefore to propose a general

method to account for late underground processes affecting rock features.

Therefore, we suggest modeling the geometry of geological bodies which re-

sult from geological processes occurring in relation to pre-existing objects.

This is the case for instance in hydrothermal-related ore deposits, caves

and paleocaves, dolomitized formations. For this, we propose combining an

object-based representation of pre-existing rock features and a stochastically
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perturbed Euclidean distance transform. After providing more details about

this object-distance Simulation method (ODSIM, Section 2), we present a

typical application to a hydrothermal dolomite formation (Section 3.1). The

ODSIM method is also applicable to other contexts, as demonstrated in Sec-

tion 2.4 by the generation of a micro-scale porous medium and of meandering

channels in Section 3.2.

2 The ODSIM Approach

2.1 Approach Overview

Figure 1 illustrates on a simple example the principles of the ODSIM method-

ology. The simulation procedure first calls for one or multiple object models

considered as the skeleton of the geological body to be simulated (Section

2.2). The idea of using skeleton object as been also introduced by Yin et al.

(2009) to reconstruct 2D channels from channel centerlines and multiple point

statistics. The skeleton in Figure 1 is a single line embedded in a 3D Cartesian

grid. The ODSIM method then computes the Euclidean distance transform

to this skeleton, resulting in a 3D distance field (Section 2.3). The latter can

be viewed as a potential field, i.e., the probability to be in the geological body

decreases when moving away from the skeleton. A spatially correlated ran-

dom field (threshold) is then stochastically simulated to perturb the distance

field. The simulated body is obtained by thresholding the difference of the
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distance and the random field. The random field is simulated imposing vari-

ous spatial parameters (probability density function –pdf– and variogram) to

control the extension and sinuosity of the geological bodies (Section 2.4). De-

spite the simplicity of this approach, it can be used to generate very different

object shapes by appropriately choosing the skeleton object and random field

features. Conditioning to well data is obtained by iterative Gibbs sampling

with inequality constraints in order to preserve both the spatial structure

and histogram of the random field (Section 2.5).

[Figure 1 about here.]

2.2 Definition of the skeleton object

Applying ODSIM relies on a first stage of generating a skeleton object consis-

tent with the target spatial phenomenon and representing first-order spatial

features. For some modeling problems, the “nature” of the skeleton object

may be very intuitive. For instance, post-depositional structures as karst con-

duits, mineralization veins or dolomitization usually originate along fractures

or faults which act as preferential flow paths and hence favor rock transfor-

mations. In this case, the skeleton object may simply consist of 3D polygons

or free-form surfaces. To give just a few more examples, the skeleton object

for simulating 2D channels could consist of sinusoidal center lines, or a set of

3D points or sphere to generate pore-scale models. Once the characteristics

of the skeleton have been determined, various approaches may be examined
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to generate effectively the skeleton object. It may be defined in a deter-

ministic fashion, or obtained from object-based simulation. For example,

regarding the simulation of fracture-related zones, fracture or fault objects

may originate from geological mapping based on aerial photograph, outcrop,

or subsurface interpretation from seismic images. When poorly constrained

by observations, fracture networks may also be generated using object-based

simulation. Object-based methods may simulate diverse types of shapes to

account for prior geological knowledge. Moreover, locally varying density and

orientation may be used to constrain respectively the local number of objects

and their orientation. Attraction or repulsion rules may also be implemented

in order to account for interaction between objects. To ensure proper con-

ditioning of the geological bodies to observation data, spatial trends can be

used during object-based skeleton simulation so that approximate condition-

ing is achieved (Stoyan, Kendall and Mecke, 1995; Lantuéjoul, 2002). Also,

simulated skeleton objects may be filtered before applying further steps of

ODSIM. For instance graphs of connectivity may be used to select only con-

nected paths of skeleton objects. This selection step can be used to filter

object-based simulation results and mimic selective processes such as dis-

solution of carbonate rocks around favorable fractures when modeling cave

geometry (Henrion, Pellerin and Caumon, 2008). It may also be used to

rapidly account for dynamic data, as proposed by Renard and Caers (2008)

in the context of pixel-based simulation.

For a new modeling problem, several questions come up to apply ODSIM:
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can the target geological body be reduced to a skeleton object? Can realistic

geometries be reproduced when randomly truncating the skeleton related dis-

tance field? What is the sensitivity of the final results to the skeleton object?

In following sections we describe strategies to construct skeleton objects for

simulating different problems such as dolomite body, micro-porous medium

and channels. In other applications, these questions should be addressed on

a case-by-case basis.

2.3 Euclidean distance field

Reproducing geometry of geological features around the skeleton relies on

the knowledge of the distance to the object. Let S denote the set of objects

constituting the skeleton object embedded in a grid G . A Euclidean distance

field associated to each point p = [pxpypz]
T of G is the Euclidean distance

from that point to the closest point q = [qxqyqz]
T belonging to any object of

S:

D(p) = min{distE(p,q), p ∈ G, q ∈ S} (1)

where the function distE is the distance between p and q given a Euclidean

metric:

distE(p,q) =

√

(px − qx)
2 + (py − qy)

2 + (pz − qz)
2 (2)
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A review of techniques to compute 3D distance field is proposed by Jones, Baerentzen and Sramek

(2006). In this work, we compute the 3D Euclidean distance transform on a

Cartesian grid with the algorithm introduced by Saito and Toriwaki (1994)

and implemented by Ledez (2003). This efficient, linear complexity algorithm

simply rasterizes the skeleton objects, then computes the distance field by

traversing the grid six times, twice along each axis.

After this step, the explicit representation of the skeleton object is defined

implicitly as the iso-value 0 (denoted S0) of the distance field D on grid G:

S0 = p ∈ G| D(p) = 0 (3)

This distance field can also be used as constraint for defining geological fea-

tures. Typically, the probability for a point to be in a geological body de-

creases when moving away from the skeleton object and becomes null beyond

a given distance threshold. Therefore, an iso-value ϕ 6= 0 of the distance field

D may be used to extract the coarse-scale envelope of the geological bodies

to generate. These objects are identified by a binary categorical property IB

defined for each point p of grid G:

IB(p) =















1 if D(p) ≤ ϕ

0 if not

(4)

Note that the computation of the distance field is not restricted to an Eu-

clidean metric. We show for instance in section 2.5 how anisotropic distances
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can be used to further introduce trends into the generated models.

2.4 Stochastic perturbation of distance field

Using a constant distance threshold ϕ to extract geological object generates

extremely smooth objects, and does not easily allow for conditioning to obser-

vation data. More realistic geometries of geological bodies may be obtained

by simulating a spatially correlated random field ϕ(p) acting as a distance

threshold in the grid G. Therefore, Equation (4) is modified as follows to

add fine-scale variability to the coarse-scale object:

IB(p) =















1 if D(p) ≤ ϕ(p)

0 if not

(5)

The threshold ϕ(p) may be generated using Sequential Gaussian Simula-

tion (Deutsch and Journel, 1998), or other stochastic simulation methods

(Emery and Lantuéjoul, 2006; Journel , 1994; Yao, 1998). The probability

density function (pdf) of the simulated threshold values and its variogram

model provide controls on the geometric features of the simulated geological

bodies.

[Figure 2 about here.]

The definition of model parameters (e.g. facies proportion, object density,

variogram, selection of a training image, etc.) is a key process for all geostatis-

tical algorithms. Provided that the skeleton object is readily obtained, a user
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applying ODSIM needs to define a distribution model and variogram model

to inform random field simulations. The distribution model of threshold val-

ues controls the size of the features, while the parameters of the variogram

model, principal ranges and principal directions, control respectively the sin-

uosity and the orientation of the final features around the skeleton (Figure 2).

Hence, the choice of model parameters should consider the geometrical char-

acteristics of the target spatial phenomenon. However, in most cases, neither

the true feature geometry nor their spatial distribution can be observed or

described with certainty at locations of relevance. Consequently, the appli-

cation of geostatistical methods often requires a priori geological knowledge

to define the extension, shapes and distribution of the target geological fea-

tures. From expert knowledge, actual measurements on analog systems or

physically-based models, there are two possible approaches to incorporate a

priori geological knowledge when applying ODSIM : (a) well-log data and

seismic survey may provide information about object distribution and ge-

ometry and then relate object parameters from prior geological knowledge

to actual subsurface objects (Caers , 2005). This approach is not specific to

ODSIM and is commonly applied for other geostatistical methods. (b) the

second approach consists in directly inferring the model parameters from a

training image that represent geometrical/geological features deemed repre-

sentative of the target pattern (Strebelle, 2002; Journel , 2006). In that case,

computation of the medial axis of the target features present in the training

image provides insights about the skeleton object characteristics. Parame-
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ters of the random field may also be obtained from the distance between the

medial axis and object boundaries : the histogram and variogram of this

distance provide the global statistics to be used for generating the thresh-

old random field. This is illustrated in figure 3 where the medial axis of a

reference pore-scale model has been computed to obtained the distribution

and variogram model of the local width of pore phase. This statistics has

then been used to generate the random threshold field and produce multiple

realizations of porous medium all different in details but sharing the same

statistics as the reference model.

[Figure 3 about here.]

2.5 Conditioning to well data

2.5.1 Hard data conditioning

Realizations honoring point observations are obtained when the simulated

random threshold field is higher than or equal to (resp. lower than) the dis-

tance value where feature presence are observed (resp. absent). Stochastic

simulation easily accounts for scalar values, so the main point of data con-

ditioning is to find some possible scalar threshold value at each binary ob-

servation data point (Figure 4), hence to run a simulation under inequality

constraints (Dubrule and Kostov, 1986). Let IF denote a categorical variable

indicating the presence (IB(p) = 1) or the absence (IB(p) = 0) of geologi-

cal body, and D(p) the distance value at data location p. Then, the scalar
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threshold ϕ(p) to be considered during simulation is constrained by:

ϕ(p) ∈















[D(p),max] if IB(p) = 1

[min,D(p)[ if IB(p) = 0

(6)

[Figure 4 about here.]

This data transformation should honor the spatial covariance model to be

used during threshold simulation. For this, we use the method introduced

by Freulon and de Fouquet (1993) for conditioning a Gaussian random field

with inequalities. It consists in an iterative algorithm based on the Gibbs

sampler (Geman and Geman, 1984):

1. The data are transformed into threshold values verifying Equation (6)

by Monte-Carlo sampling from the input threshold pdf. During this

initialization stage, the spatial correlation is ignored since values are

simulated independently one from another.

2. The initial threshold values are iteratively modified until the desired

spatial correlation is reached. During an iteration step, each data loca-

tion is visited in random order, and the current threshold is replaced by

a value sampled from its conditional distribution estimated by simple

kriging of neighboring data. A standardization procedure forces the

threshold value to remain in the desired interval.

This method is known to be sometimes slow and convergence may be difficult

to reach. Note however, that the transformation may be applied only once
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and only on the observations whose number is generally far smaller than the

number of grid cells to be simulated. We have run this transformation on

a set of hundred wells sampled from a reference boolean model. Each wells

is vertical and composed of 40 observations. For this case, convergence to

the variogram model was obtained after approximately 25 iterations and in

less time than one minute on a 2.8Ghz, 2GB RAM desktop PC. More details

on the mathematics and convergence rate of the Gibbs sampler are given by

Freulon and de Fouquet (1993). Once well data have been transformed into

continuous values, the full-field simulation can be done by a direct method

such as sequential Gaussian simulation or spectral simulation (Yao, 1998).

2.5.2 Soft data conditioning

In addition to hard data conditioning, the method allows for integrating soft

constraints. For instance, spatial trend in object size or orientation may be

accommodated in the random threshold field by specifying a locally variable

mean. This is illustrated in Figure 5A where the threshold has been simulated

with local mean increasing towards the right of the image. Note also that

the distance field need not be Euclidean, but may account for anisotropy or

locally variable metric tensor. In Figure 5B such anisotropic distance has

been computed to induce different object sizes.

[Figure 5 about here.]
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2.6 Postprocessing

As shown in Figure 6, regions disconnected from the main geological bod-

ies may results from the ODSIM method. This especially occurs when the

sinuosity of the simulated body is high, i.e., when the threshold field is sim-

ulated with short variogram range as compared to the distance field. Such

disconnected features may be unrealistic with regard to the parent geologi-

cal processes, for instance involving the propagation of a reactive front. As

there are no easy direct way to avoid these features, we suggest to filter out

of small isolated bodies deemed unrealistic. This can be performed using

image processing techniques (Serra, 1988). Note however that this is done at

the expense of the target proportion. A more complex cleaning routine could

be used by iteratively removing disconnected component and branching or

expanding others to keep the target proportion (Favilene et al. , 2009).

[Figure 6 about here.]

3 Examples

3.1 Simulating hydrothermal dolomites

The purpose of this example is to produce realistic images of dolomite bod-

ies with plume-like geometry. Most dolomites are regarded as replacement

of pre-existing limestone. Dolomitizing fluids migrate along faults and dif-
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fuse laterally into adjacent limestone following fractures and more permeable

strata (Davies and Smith, 2006, and references therein). We used a synthetic

example consisting in a Cartesian grid of 150×100×60 voxels and a vertical

fault crossing the zone. Two different sets of horizontal planes were simulated

by a marked Poisson point process (Stoyan, Kendall and Mecke, 1995). To-

gether with the main fault, these planes constitute the initial skeleton object

model (Fig. 7A). The corresponding distance field is shown in Figure 7B and

random threshold in Figure 7C. Finally the truncation of the distance field

with the random threshold given Eq.(5) generates binary images of dolomite

bodies (Fig. 7D). The iso-surface of the dolomite bodies colored with depth

values is displayed in Figure 7E. The latter illustrates the variety of shapes

and sizes that can be generated with ODSIM while preserving the global

connectivity of the simulated body.

[Figure 7 about here.]

3.2 Simulating channels

The purpose of this example is to improve the conditioning of hard data when

simulating channels with object-based simulations. Indeed, it is well known

that the conditioning of local data by random objects can be difficult with

boolean object-based algorithms. In figure 8A, channels have been simulated

using FluvSim (Deutsch and Wang, 1996) . Data which are not honored are

highlighted by the red arrows. For each realization we extracted the medi-
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als axis of channels to constitute the skeleton object (Fig.8b) and perform

ODSIM in a similar way as described for porous models (Fig.3). Using the it-

erative Gibbs sampling described in Section 2.5, binary data are transformed

into threshold values according to the target histogram (channels width) and

variogram (channel sinuosity). Finally, channel realizations are obtained by

truncating the distance field by the conditional threshold. As a result, we

can see in Figure 8 modification of the channels where data were initially

not honored. Note however that this procedure does not ensure exact condi-

tioning. This comes from the incompatibility between the location of some

data, the input channel configuration and the target histogram. Indeed, to

ensure channel conditioning (resp. non channels conditioning) the distance

between a point on the skeleton object and the data point must not exceed

the minimal value (resp. the maximal value) of the threshold histogram. In

the upper part of the channel realization (Fig. 8D) a channel observation has

not been honored because the distance of this point to the closest point on

the skeleton object is not in the histogram range. A solution to this problem

would be to use some approximate conditioning of channels when running

object-based simulation to force an object to be further or closer to an obser-

vation point than a given distance, i.e. relaxing their global conditioning to

data. The benefit of such an approximate conditioning would be the perfor-

mance of the simulated annealing/birth-death process which are reputably

slow in the presence of dense data.

[Figure 8 about here.]
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4 Conclusion

We have proposed a dual-scale geostatistical simulation method, whereby

first-order features are represented by the distance to a discrete object model,

and fine-scale features are modeled by a classical random field perturbing the

distance field. This decoupling has several advantages. First, it can bene-

fit from deterministic coarse-scale models or from object-based simulation

method while relaxing their global conditioning to observation data. It can

also incorporate connectivity information at the coarse-scale; this connectiv-

ity is preserved by the fine-scale perturbation. Truncation of the distance

field by a random threshold then provides exact conditioning together with

fine-scale details. The parameters of the method should be carefully adapted

to the problem at hand; we have proposed strategies to set the parameters

for modeling fault and fracture related heterogeneities as well as for porous

models and channels. We believe this method could be extended to other

modeling purpose and that it complements the set of available geostatistical

methods to accurately represent the complexity of subsurface heterogeneity.
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Figure 1: Workflow for object distance simulation. For one realization of a
skeleton object (Section 2.2), its related distance field D(p) (Section 2.3) is
computed and truncated by a random threshold ϕ(p) (Section 2.4) to obtain
an indicator property of the target geological body IB(p).
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Figure 2: Influence of model parameters (same example as Figure 1)
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Figure 3: From a reference pore model, statistics about pore size distri-
bution and spatial continuity is approximated based on the medial axis of
the pores present in the training image. These statistics are then used to
simulate random threshold fields. The final pore realizations are obtained by
truncating the distance field to the medial axis of the reference pore model.
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Distance field Conditional realizationof threshold field

 (p) Conditional realization oftarget geological body IB
Figure 4: Workflow for data conditioning. The indicator property IB(P )

is transformed into threshold values ϕp according to the target distribution
and variogram model. These threshold values are then used to condition the
SGS.
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Distance field Threshold realization Target feature realization
(a)
(b)
Figure 5: A, spatial trend in the object size has been introduced by spec-
ifying a locally variable mean, B, an anisotropic distance has been used to
obtain objects with smaller (resp. greater) widths in the vertical direction
(resp. horizontal direction).
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Figure 6: Post processing
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a)

b)

d)

c)

e)

Figure 7: A, two different initial discrete object model, B, object-related
distance field, C, random threshold, D, binary images of the dolomite bodies,
and E, iso-surfaces of the dolomite bodies painted with depth values for better
visualization
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ChannelsNon channels(a)
(b) Channels edgesChannels medial axis Channels edgesChannels medial axisd1 d2

(c)
(d)

ObjectÖbased simulationof channels
Extraction ofchannels medialaxis

Conditional SGS totransformed binary datainto threshold values
Channels realizationfrom truncation of thedistance to the medialaxis of channels by thesimulated threshold

Distance to medial axis

Figure 8: Improving data conditioning in channel simulation. Right column
shows a detailed view. See text for details.
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