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Abstract

The analysis of basin dynamics and burial evolution requires a good
understanding of sediment compaction. Classically, decompaction of
sediments is performed in one dimension at a well location, using either
a simple compaction/depth relationship or more complex elasto-plastic
models. This paper presents a new approach combining sequential de-
compaction with 3D restoration to allow for a true 3D basin analysis.
Decompaction is performed in 3D after each restoration step, thus
taking into account possible tectonic events and lateral thickness vari-
ations. Care is taken to apply decompaction to ensure volume continu-
ity especially around faults. This approach is particularly suitable for
syn-depositional folds whose growth strata constrain tectonic evolution
through time.

The proposed approach is applied to the sand-rich turbiditic reser-
voir analogue of Annot (SE France) where two �ctitious wells are used
to compare the new 3D technique to a well decompaction analysis.
Coupling restoration and decompaction leads to an improved assess-
ment of the basin history: an uplift of the underlying units is identi�ed,
which was not detected using decompaction on wells only. Such dif-
ferences may have a signi�cant impact on possible hydrocarbon mat-
uration models of the basin. Moreover, the geometry of the restored
and decompacted models can better constrains the basin history, and
in�uence our understanding of potential hydrocarbon migration path-
ways.
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1 Introduction

Subsidence analysis based on decompaction curves is a standard method in
sedimentary basin investigation [Sclater and Christie, 1980, Maillard et al.,
2003, Gutierrez and Wangen, 2005, Hölzel et al., 2008]. Sediment compaction
a�ects petrophysical properties in a sedimentary basin, such as pressure,
porosity and permeability. It can also a�ect the basin history itself. For
example, compaction may lead to salt diapirism in the absence of tectonic
events [Maillard et al., 2003]. It is therefore of importance to account for
compaction in basin analysis. Several models of decompaction have been de-
veloped, based on two main approaches: the �classical� method, which con-
siders compaction as a function of depth and rock types [Weller, 1959, Mag-
ara, 1976, McKenzie, 1978, Sclater and Christie, 1980, Schmoker and Halley,
1982, Lerche, 1990a, Gutierrez and Wangen, 2005], and the elasto-plastic ap-
proach, requiring more geological and physical parameters to constrain pro-
gressive decompaction [Schneider et al., 1996]. In 3D, decompaction should
also relate to tectonic deformation, especially in structurally complex areas.
Syn-tectonic deposits play a key role in assessing the structural evolution of
a basin, hence providing essential information for compaction analysis.

In parallel, balanced restoration, which aims at retro-deforming sedimen-
tary layers back to a horizontal datum or a known depositional state, is a
fundamental tool in structural geology [Chamberlin, 1910, Dahlstrom, 1969,
Groshong, 1999]. In 3D, recent authors [Muron, 2005, Maerten and Maerten,
2006, Moretti et al., 2006, Durand-Riard et al., 2010] treat sequential restora-
tion as a geomechanical problem constrained by displacement boundary con-
ditions, contact conditions, geomechanical rock properties and behavioral
laws. Restoration, performed using a �nite element method, provides the
displacement �eld for the whole model, allowing an accurate estimation of
depth changes during basin depositional history. Furthermore, the amount
of eroded material can be estimated and unconformities can be conveniently
handled by using �implicit� stratigraphic models [Durand-Riard et al., 2010],
where the mesh is conformable only to faults [Caumon et al., 2007, Frank
et al., 2007].

The objective of this paper is to couple decompaction and sequential
restoration in 3D to have a better understanding of basin burial history, as
illustrated in Fig.1. We apply this new technique to the Annot Sandstone
Formation in the Annot growth syncline (SE France) to illustrate the impact
of taking into account deformation history during backstripping, as well as
highlighting the importance of the decompaction.
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Figure 1: Flowchart of restoration and decompaction, applied to a syn-
depositional anticline (2 layers). For each layer: the porosity φ is assigned
according to the layer's lithology and varies with depth; the topmost layer is
restored; the model is decompacted; the restored layer is removed; and the
porosity φ is updated as a function of the new depth. Then, the process can
be applied to the next layer.

2 Decompacting stratigraphic piles

2.1 The main approaches

The �rst decompaction models were proposed by Athy [1930], before be-
ing enhanced by several authors [Weller, 1959, Magara, 1976, Sclater and
Christie, 1980, Schmoker and Halley, 1982, Lerche, 1990a, Gutierrez and
Wangen, 2005]. These approaches assume that normally pressured sediments
exhibit an exponential relationship between depth and porosity of the form:

φ = φ0.exp(−cZ) (1)

where φ is the porosity at any depth Z, φ0 is the porosity at the time of
deposition and c is an internal coe�cient dependent on lithology (Fig.2).

This classical analytical approach assumes that the load-response com-
paction rate has been constant through time, and that the vertical solid vol-
ume was constant. However, as discussed in Allen and Allen [2005], in nature,
these conditions rarely occur. Many factors may a�ect this porosity-depth
relationship, such as lithology, depositional facies, composition of frame-
work grains, temperature, and time. Erosion, tectonics, chemical phenom-
ena and �uid pressure can also a�ect compaction [Makhous, 2000]. Various
authors [Weller, 1959, Sclater and Christie, 1980, Schmoker and Gautier,
1989, Lerche, 1990b, Hölzel et al., 2008] have proposed a variety of more de-
tailed porosity-depth relations, each based on a similar principle of porosity
destruction under the increasing e�ective stresses experienced during burial.

The elasto-plastic approach better constrains decompaction and provides
a more accurate physical model, as it also accounts for �uid pressure. Schnei-
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Figure 2: Variation of the present-day porosity as a function of the maximum
burial depth (Z) for di�erent lithologies, compiled from several sources: C:
Chalk [Sclater and Christie, 1980]; S: Shales from 1: Athy [1930], 2: Hedberf
[1936], 3: Sclater and Christie [1980], and 4: Dickinson [1953]; Sd: Sand-
stones from 1: Sclater and Christie [1980] and 2: Atwater and Miller [1965].
Note that shales compact quickly compared to sandstones.
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der et al. [1996] express elasto-plastic decompaction with a system of �ve
equations, involving about twenty parameters including time t, porosity φ,
permeability k, phase velocities V of water and solid, pore �uid pressure q,
lithostatic pressure P , stress σ, gravity g, rock density ρ, and viscosity µ.
Mineralization, hydrocarbon generation or heat �ow may a�ect compaction
and thus bias the model [Magara, 1980, Fowler and Noon, 1999, Makhous,
2000, Suetnova, 2007]. Adding parameters such as pore elasto-plasticity
could also lead to very di�erent results from the standard elasto-plastic ap-
proach [Yarushina and Podladchikov, 2007].

However, the large number of required parameters for the elasto-plastic
approach makes it di�cult to apply, in particular during early stages of
basin exploration when the basin parameters are poorly constrained. In
contrast, in order to apply the classical approach, only surface porosity and
compaction coe�cient are required. In exploration, surface porosity is gen-
erally poorly known in a basin, but can be found in literature; it can also be
measured in boreholes and extrapolated. Surface porosity can be assigned
according to unit lithology. Moreover, Shneider et al. [1994] admit that an
elasto-plastic approach is valid only in the sedimentary basin subsurface or
in areas where the porosity is low. In subsurface, elasto-plastic and classical
models thus lead to similar results [Perez, 1998].

2.2 One-dimension decompaction limits

Most authors apply decompaction methods to wells in order to analyse the
subsidence history of a basin [Athy, 1930, Weller, 1959, Sclater and Christie,
1980, Magara, 1976, Hegarty et al., 2007, Pearson and Russel, 2000, Nel-
skamp et al., 2008]. Notwithstanding assumptions about the depth-porosity
relationship, the computation of decompaction along well paths can give
biased results because tectonic deformation between wells may have great
importance. A true 3D analysis could shed some light on this process. In
several recent modelling tools, subsidence calculations, thickness variations
and depth changes are assessed using Monte-Carlo simulations [Meckel et al.,
2007, Hölzel et al., 2008], but this process may lead to unrealistic results.
Moreover, it cannot account for unconformities that may a�ect layers. In
order to address these issues, we use 3D sequential restoration results as an
input for a true 3D decompaction, taking into account erosional events and
thickness variations.

3 Restoring volumetric models

3.1 From kinematic to geomechanical restoration

Cross-section restoration was �rst conceived by Chamberlin [1910], and then
formalized by Dahlstrom [1969], before being extended to map restoration
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[Dahlstrom, 1969, Gibbs, 1983, Gratier and Guillier, 1993, Rouby, 1994,
Rouby et al., 2000]. The method restores sedimentary layer boundaries
back to their pre-deformation geometry, usually assuming a �at and hor-
izontal depositional con�guration. Most of these restoration methods are
purely kinematic, based on geometric assumptions such as length, angle or
area conservation. Consequently, these techniques do not account for rock
behavioural laws, relating deformation and stress, and do not consider con-
trasts in rock geomechanical properties. In the case of complex geological
structures including fault propagation folds and fault bend folds, the de-
scription of the displacement and strain �elds is not accurate. In such cases,
volumetric mechanical restoration methods can provide better accuracy in
the description of strain and stress �elds [De Santi et al., 2002, Muron, 2005,
Maerten and Maerten, 2006, Moretti et al., 2006, Moretti, 2008, Durand-
Riard et al., 2010].

3.2 Performing 3D geomechanical restoration

To perform 3D restoration, an elastic behavioral law is assigned to the model
and isotropic rock properties are de�ned for each layer. Displacement bound-
ary conditions are de�ned: (i) the topmost horizon is set to a reference
elevation; (ii) some regions of the model are �xed to avoid body rotation
and ensure the uniqueness of the solution. Contact conditions are set to
ensure there are neither gaps nor overlaps between fault blocks at the end
of the restoration. Then, the �nite element method is used to compute the
displacement �eld while honouring boundary conditions, minimizing the en-
ergy of deformation and respecting moment and mass preservation principles
[Muron, 2005, Durand-Riard et al., 2010, Durand-Riard, 2010]. Volume vari-
ation is minimized during this process, but the restored state can have local
volume changes due to retro-deformation of the model.

Restoration is performed sequentially on each layer of the model, from top
to bottom, and leads to the retro-deformation tensor, from which retro-strain
and retro-dilation are computed. For the sake of simplicity, in the following
sections, deformation, strain and dilation are used instead of, respectively,
retro-deformation, retro-strain and retro-dilation.

In order to avoid meshing issues in thin layers, we use the new restoration
technique developed by Durand-Riard et al. [2010], where the restoration is
applied to implicit models, in which horizons are represented as a scalar
property isovalue in the tetrahedral model [Frank et al., 2007]. Because the
properties representing horizons are continuous through the whole model, un-
conformities are dealt with easily, and eroded volumes can be reconstructed
between successive restoration steps.
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Figure 3: Projection onto a reference surface. A: Using stratigraphic upper
surfaces, compaction may be computed in a multi-lithological column ex-
cept in the case of a fault; B: Using mathematical tops, compaction can be
computed correctly.

4 Integrating decompaction into the 3D restoration

process

4.1 Method

Performing sequential restoration on a geological subsurface model leads to
an improved understanding of the basin history, but in most cases decom-
paction is not incorporated. We propose to include decompaction into the
restoration process in order to assess the basin history in a more complete
way. Depth changes derived from restoration, with respect to a base level,
are used as input for decompaction. This base level is usually taken as mean
sea level, but may be re-evaluated to account for paleo-bathymetric and eu-
static corrections. Within this method, eroded volumes may be estimated
and incorporated into decompaction calculations.

In one dimension, to calculate the thickness of a sediment layer at any
time in the past, the layer is moved up the appropriate porosity-depth curve.
In other terms, overlying sediment layers are sequentially removed, allowing
the layer of interest to decompact from depth interval [Z1, Z2] to uncom-
pacted interval [Z ′1, Z

′
2]. In the case of exponential relationship between

porosity and depth (Eq.1), the decompaction equation, representing the slid-
ing of the sediment layer up the exponential porosity-depth curve is expressed
as follows, and is solved using a numerical iterative computation [Allen and
Allen, 2005].

Z ′2−Z ′1 = Z2−Z1−
φ0
c
(exp(−cZ1)−exp(−cZ2))+

φ0
c
(exp(−cZ ′1)−exp(−cZ ′2))

(2)
To apply decompaction on a volumetric mesh, this equation is used to

compute the displacement on each mesh node: decompaction is computed at
each point as a function of depth below the surface and below the top of the
current layer. This computation is performed starting with the uppermost
unit and descending through the lower units so that the displacement of the
nodes belonging to the overlying regions is taken into account. Moreover,
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Figure 4: Initial synthetic model displaying porosity as a property and
boundary conditions used for �rst restoration: a pin wall is de�ned and
the top horizon will be restored to a reference elevation (�at datum).

when faults are present in the model, special care must be taken to ensure
the continuity of the decompaction. As shown in Fig.3, nodes located �un-
der� the fault are decompacted using the fault surface as top region, which
requires the timing and amount of displacement on the fault to be known.
For e�ciency, we compute fault displacement �rst by projecting vertically
through the layers until reaching the restored surface; then the whole model
can be decompacted using the approach illustrated in Figure3B.

In the case of eroded layers, the implicit approach uses several scalar
�elds for each conformable sequence, thereby providing a possible layer ge-
ometry in the eroded area. As done in 3D restoration, decompaction can use
this extrapolated geometry to account for initial volumes and thicknesses of
sedimentary layers.

4.2 Results on a synthetic growth fold

A synthetic growth fold (Fig.4) was restored, then decompacted. This model
was compared with the restored only model. The same boundary conditions
were used for both: a wall was �xed along the x and y axes, and a zero
reference elevation was de�ned for the topmost horizon. For the porosity,
the layers were considered as shaly sands (layer 1) and sandstones (layer 2).

As shown in Figure5, taking into account decompaction during restora-
tion led to volume changes. The restored and decompacted volume showed a
volume di�erence of 2.3% compared to the restored only model after the �rst
restoration step, and of 1.2% after the second restoration step. Denoting V0
as the initial volume of the layer and Vi as its volume at a later time i, it is
possible to de�ne the compaction rate τ of a layer as the volume ratio:

τ =
Vi − V0
V0

(3)
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Figure 5: Comparison of restored models with restored and decompacted
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property are computed and show an increase of the dilation values when the
decompaction is performed.
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Layer Lithology
Volumes (Gm3) and volume variation (%)

Initial R. 1 R. & D. 1 R. 2 R. & D. 2

1 Shaly sandstone
393.1 397.7 403.9

�
�
�

�
�
�

0 1.2 1.6

2 Sandstone
853.7 854.5 877.2 882.3 893.0
0 0.1 2.8 3.4 4.6

Table 1: Volumes and decompaction rates (τ) for the di�erent steps of the
backstripping: R. i is the restored only model for the step i, and R. & D. i
is the restored and decompacted model for the step i.

Assuming a maximum burial depth of 1000 m for the topmost layer
of the model, the compaction was equal to 1.6% for the shaly sandstone
layer, and 4.6% for the sandstone layer (Table 1). These results are in
agreement with standard estimations of compaction [Sclater and Christie,
1980, Meckel et al., 2007]. For each step of restoration and decompaction,
the strain was computed from the summed displacement vectors and the
dilation is displayed in Figure 5. Performing decompaction increases the
dilation values: the histograms of the dilation property are translated to the
right for the decompacted models compared to the restored only models.
It is thus important to perform this step separately to have an increased
knowledge of the deformation history.

5 Application to the Annot sandstone

5.1 Geological settings

The Annot Sandstone is a well-known analogue for sand-rich deep-water
reservoirs [Moraes et al., 2004] that has been studied by many authors [Pick-
ering and Hilton, 1998, Sinclair, 2000, Joseph et al., 2000]. It is preserved
in a series of isolated outliers of the Tertiary foreland basin in the Alpine
fold-and-thrust belt (SE France). In this case study, we consider the Annot
inlier in which the Annot Sandstone is preserved in a growth syncline. It is
70 km NW of Nice (on the Mediterranean coast) and covers an area of 70
km2 (about 11 km North-South by 6 km East-West). It lies just at the inter-
section of the Digne thrust system (trending NNW-SSE) and the Castellane
Arc (trending E-W) (Fig. 6). In this mini-basin, a turbidite succession fed
from the South by fan-deltas was deposited over a period of 10 My from the
Bartonian to the Rupelian, in the active Alpine wedge-top foreland basin
[DeCelles and Giles, 1996, Ford, 2004]. These turbidite deposits overlie the
transgressive Nummulitic Limestone and the deep-water Globigerina Marls.
In the Annot depocentre, local members are de�ned and mapped within this
turbiditic formation. They are labelled from A to G upward. The facies
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evolve from sand sheet deposits (A and B; distal lobe) to slumps (C and D)
and to channelized systems (E, F and G) (Fig. 7).

5.2 Model description

The 3D model was built from available �eld data [Albussaïdi and Laval,
1984, Callec, 2001, Puigdefàbregas et al., 2004, Salles et al., 2010], taking
into account three faults, including the Rouaine fault, in a domain of interest
limited by the Ourgues fault towards the East. Two scalar �elds were interpo-
lated to model this Tertiary depocentre: one for members A-G, and another
one for the Nummulitic Limestone and the Globigerina Marls (Fig.8).

5.3 Used parameters

For the porosity, since no borehole has been drilled in the area, we propose
to set typical default values used in most modelling packages (e.g. Sclater
and Christie's depth-porosity relationship) and values as described in Figure
2, with a sandstone value for the Annot Sandstone (members A to F), marls
and limestone values, respectively for Globigerina Marls and Nummulitic
Limestone. The obtained initial porosity ranges from 0.15 to 0.5 % (Fig.9).

The maximum burial depth of the Annot Sandstone is not well docu-
mented. It is suggested to have been between 900 and 1200 m for the top
of the Globigerina Marls [Mougin, 1978, Euzen et al., 2004]. We use an av-
erage value of 1000 m in our study. At each restoration step, the top of the
considered layer was restored to Z = 0, starting with member G, and the
coordinates along the eastern boundary of the model are used as reference.
Decompaction was applied on all underlying units between the restoration
steps.

Additionally, for comparison purposes, decompaction was computed on
two �ctitious wells in two di�erent blocks of the model (Fig.11).

5.4 Decompaction impact on restored models

Fig.10 shows the results of two steps of restoration and decompaction. For
each step, the restored and decompacted models are shown (respectively R
and RD). At the �rst step, the top of the member G was considered. As
expected theoretically, the decompaction led to an increase of dilation val-
ues, and di�erences between the Rg and RDg models increased with depth.
Because this �rst stage uses the maximum burial depth values to compute
decompaction, the obtained values were relatively high, leading to consider-
able di�erences between Rg and RDg con�gurations. Restoration and de-
compaction were then performed sequentially on the other layers, using the
obtained depth from the previous step. The second step in Fig.10 (Rb and
RDb) corresponds to the restoration and decompaction of the top of mem-
ber B. The decompaction increased the dilation values as well, but in a way
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that was not signi�cant compared to the uncertainties due to the restoration
parameters.

During the whole sequential decompaction process, the dip of the fault
surfaces rotated about 1◦-2◦, compared to the initial model. The connections
between the di�erent stratigraphic units across the faults were modi�ed when
the dip of the fault was modi�ed. For instance, impermeable rocks of the
Globigerina Marls were juxtaposed with Annot Sandstones, sealing the fault
where transmissivity was considered possible. Alternative �uid migration
pathways can therefore be identi�ed by coupling restoration and decom-
paction.

5.5 Restoration value in the decompaction process

The plots of depth versus time were drawn on two �ctitious wells, one lo-
cated in the Western fault block and the other one in the Eastern fault block
(Fig.11). They show that applying decompaction on wells in the classical
way may lead to di�erent decompaction curves as compared to decompact-
ing within the restoration process. The depth variations from the restoration
results identify an uplift of member A and of underlying units around 34 Ma.
This uplift led to the exposure of some areas of member A above sea level,
which should have resulted in erosion. While an uplift can be consistent with
the local tectonic setting and with the Sandstone members' lithostratigraphy
(members A and B show evidence of a passive basin in�ll whereas members
C-F lithologies highlight an active in�ll), member A does not show any ev-
idence of erosion. This inconsistency may be due to the restoration to a
Z = 0 datum: the paleobathymetry during the deposition of members A
and B sandstones was not zero. By simply applying decompaction on wells,
this speci�c local tectonic event could not have been detected, in particular
in the western block where member A is not present everywhere.

To highlight the importance of an improved burial history, let us assume
that the conditions equivalent to the hydrocarbon kitchen were reached at
a depth between 400 and 1200 m. Applying backstripping on wells in the
classical way, the decompaction graph of the well 1 suggests that member
A of the Annot Sandstone was under appropriate conditions for hydrocar-
bon maturation during more than one million years. Using decompaction
and restoration, this period is reduced to about 0.2 m.y., which drastically
decreases the timing for hydrocarbon maturation.

6 Conclusions

Coupling sequential restoration and decompaction calculations considerably
improves 3D basin analysis. Indeed, taking decompaction into account af-
fects the retro-dilation distribution, which may otherwise be under-estimated.
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Figure 10: 1. Initial model with boundary conditions for restoration; 2.
Results of restoration of the top of member G, showing a tilting of the
model; 3. Results of restoration followed by decompaction. The dilation
property is computed and painted on Rg using the restoration vectors, and
on RDg using the total vectors (summed restoration and decompaction). 3.
and 4. show restoration Rb and restoration followed by decompaction RDb

for a later stage (restoration of the top of member B).
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Figure 11: Top. Initial model with the location of the two �ctitious wells;
Bottom. Plots of depth versus time for the two wells, comparing decom-
paction at well with decompaction coupled with restoration.

Even if porosity values cannot be calibrated since no borehole data are avail-
able in the Annot basin, accounting for decompaction using typical default
values allows for an improved assessment of the basin history. A key result
of the 3D sequential restoration is the apparent uplift of the lowermost units
(member A of the Annot Sandstone, Globigerina Marls and Nummulitic
Limestone) which has been identi�ed, while one-dimensional decompaction
cannot assess such depth variations. Coupling decompaction and restora-
tion may lead to a better understanding of hydrocarbon maturation and
migration. The relationship between porosity and depth has been consid-
ered exponential; other relationships (such as linear) could be implemented
to quantify related uncertainties. Sensitivity studies of the decompaction co-
e�cient and surface porosity may also be performed to evaluate the impact
of using default values in the application to the Annot Sandstone model.
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