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Abstract

Stochastic simulation of fracture systems is an intergstioproach to build a set of dense and complex networks.
However, discrete fracture models made of planar fractgeseerally fail to reproduce the complexity of natural
networks, both in terms of geometry and connectivity. I8 8tudy gpseudo-genetimethod is developed to generate
stochastic fracture models that are consistent with pedtebserved on outcrops and fracture growth principles. The
main idea is to simulate evolving fracture networks throggbmetric proxies by iteratively growing 3D fractures.
The algorithm defines heuristic rules in order to mimic theehamics of fracture initiation, propagation, interaction
and termination. The growth process enhances the produatitnking structure and impacts the connectivity of
fracture networks. A sensitivity study is performed on &atic examples. The method produces unbiased fracture
dip and strike statistics and qualitatively reproducediaeture density map. The fracture length distribution law
underestimated because of the early stop in fracture grafte¢hintersection.

Keywords:
Fracture, Growth, Connectivity, Stochastic Simulatioenétic Approach, Pseudo-Genetic

Introduction

Fractures are ubiquitous structures occurring in a widéeetsaof rock types and tectonic settings over a broad
range of scales. The average permeability of these staldtaterogeneities may be a few orders of magnitude higher
or lower than those of the surrounding matrix rocks. Coneatly, fractures are known to significantly impact fluid
flows.

Because the spatial characteristics of a fracture netwanrkat be known deterministically, they are simulated us-
ing a statistics measured field. The high uncertainty of rhgeemetry requires simulating several networks. A lot of
methods generating stochastic fracture networks havedmatioped (for reviews, see €.g. Jing (2003); Chiles (2005
Dershowitz et al. (2004); Dowd etlal. (2007)). To be consisteth field observations, the statistical process can be
constrained by 3D density and orientation maps derived fseramic attributes (Dershowitz, 1984; Maerten ét al.,
2000; Will et al.; 2004; Freudenreich ef al., 2005) amdtrain analysis (Priest and Hudson, 1976; Kloppenbuadl et
2003). Discrete Fracture Network (DFN) models generalfuase planar and rectangular fractures. Unlike geome-
chanical fracture models reproducing fracture growth artdraction |(Olsan, 1993; Renshaw and Pollard, 1994b;
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Tuckwell et al.| 2003; Jing, 2003; Welch et al., 2009), ptadiacrete fracture models cannot reproduce linking struc-
tures and tend to underestimate the connectivity of thedrametwork for a given fracture density.

We propose @seudo-genetiapproach for simulating 3D DFN models. It integrates ingdhom fracture me-
chanics within a probabilistic framework. As proposed byn@arten |(1998); Bourne etlal. (2000); fimann et al.
(2004)] Srivastava et al. (2005), we aim at minimizing thekveess of both mechanistic and probabilistic approaches
while exploiting their strengths. We are particularly i@sted in reproducing thefect of mechanical interactions
between fractures and in investigating the resulting €nachetwork connectivity.

Thepseudo-genetimethod focusses on tensile fractures (Mode I). Such frastare grown starting from a prior
knowledge of fracture parameters and of rules about fragtitiation, propagation and termination. As recallechia t
sectiori 1, a tensile fracture creates symmetrical comsmacumulation zones (Figl. 1) and grows parallel to thekcrac
plane. Rock heterogeneities (flaws, pre-existing frasturg alter the propagation path loading the fracture with a
mixed mode I-1l (Renshaw and Pollard, 1994b; Vermilye anddbs 119938).| Srivastava etlal. (2005) use empirical
geostatistical rules inspired by geomechanics to growtdras and fill in 2D and 2.5D fracture maps. In the same
manner, we use heuristic geometric rules to mimic mechbfrmeture growth and simulate 3D DFNs (sectldn 2).
The simulation method generates realistic fracture pagter 3D with less computationafferts than geomechanical
simulation. The method produces multiple realizationsature systems by randomly sampling input statisticad dat
then growing each fracture using deterministic heuristies. In sectiofl3, we show the impact of the method on the
connectivity and statistics of the DFN as compared to atasgilanar DFNs.

1. Physicsof fracturegrowth

The simulation technique proposed in this paperpseudo-genetiapproach which propagates fracture patterns
using heuristic rules for fracture growth instead of medtercalculations. In order to illustrate the underlyingés
that lead to the definition of these rules, we summarize bslome important concepts and results about fracture
growth in the framework of Linear Elastic Fracture MechanicEFM). We refer the interested reader to Atkinson
(1982); Pollard and Aydin (1988); Atkinson and Craster B)Yand references therein.

1.1. Fracture initiation

Fractures initiate at flaws for instance, fossils, graimsjtes, micro-cracks and other objects, that have elastic
properties dferent from those of the surrounding rock. These flaws modiéystress field in such a way that the
magnitude of local stresses at the flaw may exceed the strefighe rock, thereby initiating fractures (FIg. 1). We
reproduce this process using a heterogeneous Poissonppoagss for fracture seeding. The fracture density cube
may come for instance from structural analysis or microsgislata(Madé, 2006; Amorim etlal., 2012). As the stress
concentration around fracture tips increases with thetdracarea, a fracture continues to propagate as long as there
is energy available for propagation.

1.2. Fracture propagation

The propagation of a fracture is controlled by the stresd fielar fracture tips. This stress field is heterogeneous,
the region of stress concentration is small and the strefmgease with the distance to the tip (Fi. 1). When the
fracture propagates a damage zone appears relaxing theaiotssaround. The zone where constraints are relaxed is
called theshadow zonéScholz et all, 1993; Cowie and Shipton, 1998; Vermilye aciolo®? | 1998; Kim et &ll, 2004).

All stress components;; around the fracture are proportional to quantities cadlgdss intensity facto(Knm)
(Pollard and Aydin| 1988). They measure the stress corat@rrwhich depends on the applied load and on the
fracture geometry (Fid.]1). In fracture mechanics, thremliog modes are generally identified (Pollard and Aydin,
1988):

¢ mode I: tensile mode which characterizes opening displacém
e mode II: shearing mode which characterizes sliding perioetat to the fracture propagation front.

e mode Ill: shearing mode which characterizes sliding par#dl the fracture propagation front.
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A tensile fracture propagates when the mode | stress inyefiasitor (K,) reaches a critical value for mode | loading

(Kic):
K| > ch (1)

Kic is called the fracture toughness, and is a property of theniaht Expressions for stress intensity factor combined
with the propagation criterion allow to make important igfleces about the behavior of fractures:

e Fortwo fractures of unequal areas subjected to the sameglstress, the larger joint will meet the propagation
criterion first.

e Forjoints with equal areas in a spatially varying stresslifitle joint subjected to the greatest driving stress will
propagate first.

In the proposed simulation, the stress intensity factootsmodeled explicitly but the observations about fracture
sizes are directly translated in the growth algorithm.

1.3. Fracture interaction

Interactions between nearby fractures influence fractuwertty and termination, and consequently the fracture
pattern. A fracture propagatesKf increases (when constraint accumulation zones overlajaifi K,c decreases
(when a fracture is growing in damage zone) (Equdiion 1)hEecture enhances the propagation of its neighbor by
inducing shear stress. As a result, fractures progreysiegiverge towards each other and enhance fracture linkage.
This explains the common hooked-shape of en-echelon fiex{{rig[2). Fracture interactions have an important
impact on the final geometry of the fracture network.

As the area ratio between the two interacting fracturesesmes, the propagation energy of the largest fracture
approachesthat of an isolated fracture, while the enemghéshorter fracture falls to zero. This means that thedong
fracture deactivates the growth of nearby shorter fraciDe&srdt and Aydin (19817) reported a similar shieldinjext
when parallel fractures interact. The shieldirfiget is taken into account in the proposed simulation allgoritvhich
iteratively grows fractures.

1.4. Fracture termination

Fracture termination depends on the factors that decreaserease the energy available for propagation. Because
stress concentration at tips increases with fractureferagtacture should not stop growing if all others factoreaen
constant. Fracture propagation stops if either the fluidguree decreases, or if remote stresses incrediseiestly.
Fracture termination may also occur depending on rock ptigse for example, when a fracture propagates into a
stiffer or a less compressible rock, or when a fracture intergewther discontinuity such as lithologic boundary,
or another fracture_(Cooke and Underwood, 2001; d'AlessibMartel,l 2004). In our approach theséeets are
addressed through the input statistical law for fractuze,sand by terminating fractures during propagation rather
than through a post processing (Macé, 2006).

2. Pseudo-genetic simulation of fracture network

The key aspect of thpseudo-genetisimulation of fracture network is to replace mechanicatuftions by
heuristic rules based on mechanical principles that gogpeming fracture growth. We consider that the curvature
observed for mode | fracture network are mainly due to thevgr@f neighboring fractures. We explain the fracture
growth algorithm for 2D fracture network, then discuss agtens to 3D cases.

2.1. Initial Fractures

Srivastava et all (2005) propose to initiate fracturesgiaiclustered point process around cracks identified from
aerial photography. Here, we initialize fracture seedsgisiaditional Poisson point process (Stoyan et al., 199b).
cro cracks are randomly distributed according to a densitgeh(expected number of fractures per unit volume). Asin
Srivastava et all (2005), the fractures are not generatbéinfinal state but as short linear segments (in 2D) whieh ar
then propagated. The orientations of fracture are givendigitsstical distribution law or by an orientation map. Such
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local orientation may come from seismic attributes (Dewgtry|1984) Will et al.| 2004; Freudenreich et al., 2005) or
prior geological constraints and deformation analysisv@ture, strain).(Priest and Hudson, 1976; Kloppenburdiet a
2003; Mace et al., 2004). An intended final fracture lengthlso drawn in a distribution law. From the expected final
length L) and the number of propagation stegkfixed by the user, the initial length ) of the fracture is computed
as follows:

li=L¢/(2k+1) ()

The number of propagation steps directly controls theahitacture length and growth speed. Fixing the number of
propagation steps to 0 means that fractures get directhefofinal state. It corresponds to the classical simulation
a discrete fracture network without propagation.

2.2. Propagation process

Once fractures have been initialized, their propagatisinwlated by sequential growth. Each fracture of the
network is grown by decreasing sizes. Longer fractures esegdropagated to reproduce theet of diferential
growth rate among fractures (i.e. a few large fractures lhgegreatest impact on the final fracture pattern (see
section[1.P)). Indeed, longer fractures having their pgecnes growing rapidly will feect the propagation of
smaller fractures.

Both constraint accumulation and shadow zones of fracaesn the growth of neighboring fractures (section
[1.2). The physical controls on the size of these zones amdypauderstood. Estimates range from 10% to 50% of the
fracture dimension (Cowie and Shipton, 1998).

In our implementation, an attraction zone distandg)(is defined around each fracture to reproduce fiiece
of these zones. The attraction zone is represented by aespbetered on the closest node to the fracture tip to
propagate. The attraction zone distandg)((radius of the sphere) is computed from a ratidiXed by the user) of

the corresponding fracture ared){(
dac = VA/(mxT) 3)

The search strategy to define interacting fractures wittctiteent growing fracture is illustrated in Fig. 3. For
a free fracture tip, the space is separated by the plane héorttee current direction of propagation. All fractures
located ahead of the defined plane are browsed to check & thaan overlap between the attraction zone of the
fracture being propagated and the surrounding fracturaciitbn zone. At this point, our implementation does not
distinguish between the constraint accumulation zone l@dthadow zone of neighboring fractures. A very simple
way to achieve this is to stop fracture propagation whentimsrthe shadow zone of another fracture.

For each fracture, its free tips are propagated by a fixedlstegih (; in Equation[(2)). The direction of propa-
gation () depends on: (1) the possible interactions between theraitiy being propagated and nearby fractuii@s (
and (2) the background orientatio@ﬂ). The influence of each component is controlled by a weightéctor (o)

(Fig.[3 (d)):

P =((1- 20)."+ 20.0p) i 4

The background 0rientati0|tﬁ() in equatiori ) takes into account both the fracture mechdimertia through the
current propagation vectoPZur) and possibly a local orientation maﬁ,ﬁ), if any. The current growth direction of
the fracture is adjusted considering an optional orieoathap by a weighting factor defined by the usgj (Fig.[3

(©)).

Ob = (1 — &0).Peur + £0.0m (5)

The deviation (_) is computed as the mean orientation of the vectors linkiregetixtremity being propagated and
the closest points of the fractures contained in the neigidmm. These linking-vectors are not& (Fig.[3 (a)).
Srivastava et al| (2005) use a distance-based techniqugntediby a kriging approach to define the contribution of
each linking-vector in the computation of the mean deviatiector. Considering that fracture curvature is mainly
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due to the fracture interaction stress (Renshaw and Poll&@#1a), we introduce weight Iinking-vectoﬁil by an
inverse distance weighting ratia;} (Fig.[3 (c) and (d)):

= Z,h xD; with: A = (Ori/di)/ Z(Orj/dj) and Of; = dat + dagi — 0 (6)
i J

For each interacting fracture, the overlapping ra@;} quantifies the extent of the overlap between attracting
zones. Then an inverse distance interpolation weightedrbgets the impact of interacting fracture on the growth.

Finally, the free tip is propagated by its fixed step sizes¢e equationl2) in the new direction of propagation.
Propagation vectorsXin equatioi#t) are computed and applied at each fracture &valuate new ones. New line
segments (in 2D) or new surface elements (in 3D) are creaetlen old and new tips.

2.3. Fracture Termination

Fracture propagation stops when the fracture reachestésdad final length (i.e. at the maximum number of
propagation steps) or when it intersects another fractuemother discontinuity such as a bedding plane. It is also
possible to allow crossings. Therefore a truncation praipais used to control the proportion of fractures which
terminate on pre-existing mechanical discontinuities.

Stopping fractures propagation does not guarantee thaiutpait length distribution exactly matches the input
one. This also happens in classical DFN approaches whetufezcare post-processed to respect a given hierarchy.
We will quantify the bias on fracture length in sectidn 3.slhiowever important to note, that the sizes of the fractures
are often very uncertain since borehole data provides auwliyéct information and analogs may not be available.

2.4. Extensionsto 3D

The application of the method in 3D is based on a descriptidraotures as rectangles. Best results are obtained
using a 2.5D approach for each fractures in which the 2D ahgaris applied along strike and the fracture is ex-
trapolated linearly in the dip direction. Our experimentplging the same propagation rules in both strike and dip
directions often yield fractures which have a saddle gepnf€aussian curvature 0) (4 (b)).

Another open problem in 3D is the partial branching of fraes) whereby two fractures intersect only a part of
the total fracture edgé€l(4 (a)). In that case it is possibkdp the propagation once the contact is detected.

For these reasons, we consider the algorithm best works alh&ractures are seeded in the same lalkr (4 (c) et

(d).
3. Examples and sensitivity analysis

The pseudo-genetimethod sets the global DFN geometry with statistics andatkes it locally using a fracture
growth process. The growttfers three dferent input parameters which control the fracture geometry

e The fracture growth velocity (set by the number of propamgasitepsN).
e The weight of the background orientation vector (set by theghting factortg, equation[(#)).
e The attraction zone extent (set by the rati@quation[(B)).

An infinite number of diferent networks can be generated with the described set afmgders (input statistics
and growth parameters). We describe tiea of growth parameters on fracture geometry by selecémgvialues
for each parameteM, 1o andr. We consider the corresponding DFN properties qualithtized quantitatively.
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3.1. DFN qualitative study: 2D-Example

In this part, visual criteria are used to describe output Rfelmetries. We particularly focus on fracture length,
bending, and on the number of clusters. Eig. 6 (a), (b) andHoyv fracture networks obtained by classical DFN
simulations (without growth), which is our reference cassttidy the &ect of fracture growth on input statistics and
fracture clustering. Fid.16 (a) shows a DFN made of paralkh@r fractures with no connection. This is unrealistic
regarding the fracture growth principles described inisad. On the contrary, Fid]6 (b) and (c) show DFNs for
which almost all fractures are connected to at least andtaeture. Those are not realistic either because fracture
geometry is set independently for each fracture withoutsim®ring any interactions between fractures. A lot of
fractures are intersecting one or several others withantisgfected.

Increasing the number of propagation stdgsléads to an increase in the number of times the fracturedictiens
are evaluated. Fidl 6 (d), (g) and (j) show hdlhimpacts the fracture geometry on a planar DFN with a constant
orientation. WherN increases, fracture bending increases as well as fracttmeonnections. Thus, the number of
clusters decreases. On Hig. 6 (e), (h), (k) and (f), (i),al).increase oN has the samefkect on fracture bending,
but the number of clusters tends to increase when compargdriar DFNs. This can be explained because we stop
fracture growth when the fracture is branching on another dinen, one fracture cannot cross several fractures.

The number of propagation stepN)(influences fracture interactions. Fracture deviationasputed at each
propagation step, so deviatioffects compound. As a result, fracture geometries may begdyraarved with high
value ofN. Fig.[7 further explores thefect of attraction zone extern)( and the weighting factor setting the influence
of these fractures in the deviation computatiag) ( Whenr increases, the deviation is computed from closer fractures
reducing curvature of fractures and changing the overalheotivity of the network for fixed fracture centers. When
Ap increases, the deviatiofffect is reduced, leading to more linear fractures.

From Fig[® andl7, we can observe that growth parameters infigature bending and branching. A branching
contact between two fractures stops the growth. As a coesegifracture length is reduced, the number of fractures
per cluster increases and the number of clusters decreases.

3.2. DFN quantitative study

The algorithm parameters have a direct impact on the fractatwork emergent parameters such as connectivity
or size of non-fractured blocks. Over a large number of DRizations, it is possible to quantify how such fractures
evolve with input growth parameters. Therefore, we haveegerd three dierent kinds of DFNs and compared
their statistics on a hundred realizations. Each DFN is amsag of vertical fractures simulated on a homogeneous
fracture density map and constrained by input parametesgramarized in Tablgl 1. The order of magnitude spanned
by distributions of natural fracture network is very largeg; 10cm — 100m). In these examples, we chose a narrow
uniform length distribution law (from 15 to 35 m) to perfornvigual study of fracture interactions.

3.2.1. Quantitative study of fracture properties

Statistics on DFN properties evaluated from cases 2 andt8g[MH are compared to those from classical DFN
simulation which perfectly honors input statistics (cas@&dble[1). Fig[P and Tablg 2 gather the results of the three
different cases in terms of fracture (length, azimuth) anddractetwork parameters (average number of clusters per
DFN, connectivity). The bending of fractures slightly spas input azimuth distribution but the principal directisn
kept (Fig[® (c)). The main impact of the method is to decréfasdength of fracture because of the growth inhibition
due to fracture interactions (F[d. 9 (b) and (c)). We obsémagthis bias of length is higher when the range of the input
length distribution is wider. A possible strategy to alkei this truncationféect could be to continue the propagation
of lager fractures when they intersect smaller ones.

Because thpseudo-genetimethod changes the fracture length distribution (creatingller fractures), it is worth
checking the fracture density map for possible bias. The ®piesented here are simulated from a homogeneous
fracture density map, and should therefore reproduce aramdbject implantation (Stoyan et/ al., 1995), and E-types
obtained fronpseudo-genetisimulations should be homogeneous. Three thousands siongdhave been performed
for each case (tablé 1) and the E-types were built (Fig. 8pbterizing each fracture trace on the Cartesian grid and
computing the experimental probability for each grid celbe intersected by a fracture. They show that the method
reproduces an homogeneous fracture density map. Howéeedensity values observed for the E-type of planar
DFNs (Fig[8 (a)) are higher than the ones obtained withpeudo-genetimethod (Fig[B (b) and (c)). To reduce
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this bias we are working on a method in which fractures willtnplanted and grown until the expected density is
reached.

3.2.2. Quantitative study of fracture connectivity

Connectivity is a crucial parameter to investigate becafige direct impact on fluid flow. It can be defined locally
as a two point connectivity (Renard ef al., 2011) or at glsbale following the percolation concept. Robinson (1983,
1984) found that the right invariant to quantify the fraetaetwork connectivity is the average number of intersastio
per fracturd ¢ (Table[2). He computes a percolation threshold of approtiwmelg 3.6 intersections per fracture. This
result has been computed independently of any orientatisogiopy. It means that even if the fracture network
presents a preferred strike or orientation, if the averageber of intersections per fracture exceeds 3.6, at least on
connected fracture swarm crosses the model. Bour and D&@# (1998) propose a unique percolation parameter
(equatiorl) to describe the network connectivity:

p= PV (7)
i=1

wheren is the total number of fractures in the netwokkthe fracture length and the volume of the system. The
parameteip represents thefkective connectivity of the network. The proportion of fraies inside the volume of
interestis evaluated. Considering planar fractures wvaittdom orientations, Bour and Davy (1998) define a length and
a density parameter to fix arffective connectivity. Bour and Davy (1997, 1998) computepbecolation threshold
which has to be calibrated for non random strike distributaw.

Table[2 quantifies the network connectivity for the casesquried in Tablgll. For each case, we start from the
same length distribution law, fracture density map, and seénitialize the Poisson point process. As a consequence,
the same number of fractures is simulated. For cases 1 tod@ngders are set in order to increase the fracture
bending. This also reduces the number of clusters and isesethie average number of intersections per fracture
I+. Compared to planar DFN simulation, tipseudo-genetimethod considerably increases fracture intersection
probability and creates DFNs closer to the percolationstioll proposed by Robinsaon (1983, 1984). However, we
observe a diminution of the percolation paramepghen the number of connections per fracture increases.i¥hi
due to the linking process that stops the growth process addrastimates both the length distribution law and the
fracture density map.

In a fracture network, both the number of connections andriture density have an impact on the connectivity.
De Dreuzy et al1(2001); Davy etlal. (2010) perturb fracterggth distribution law and density parameters to enhance
fracture interconnections and so rock permeability. Outhoe allows an increase of interconnections even if we
simulate fractures with preferred orientation. The earbpof fracture growth brings bias to the length distribatio
law and the fracture density map. We are currently workinghisiproblem because it impacts connectivity and fluid
flow.

Conclusion

A stochastic approach enables the building of a large sefdf Eonstrained by statistics from field observations.
It is difficult to characterize these models because we have no algpbarameters to quantify DFN quality. In this
work we test how simulated DFN honor conditioning data,ipatarly by considering fracture parameters distribution
law. Our method relies on pseudo-genetisimulation to generate DFNSs. It increases the consisterittynatural
analogs but does not perfectly honor conditioning stasistiHowever, the huge uncertainties associated to input
statistics justify their approximation. In the spirit|of Béer et al. [(2012) who propose a parameter to characterize
fracture spacing, new tools have to be implemented to imgBN characterization.

Most of the authors propose the assumption of planar frastufhis underestimates the proportion of linking
structures and acts on DFN parameters especially in terrosrofectivity and flow. However, we have shown that
taking albeit approximately the fractures interaction simdiosity into account has a significantimpact on conniggtiv
measures. The natural reservoir connectivity falilt to estimate and to use as conditioning data. That is why a
important further step would be to calibrate parameters dynamic data.

Finally, more research needs to incorporate genetic caandeFN simulation to bridge the gap between ap-
proaches in characterization of fractured rocks.
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Fracture

I T forr << 2a
o —Km \/; i (9) forr = a stressisin 72

Figure 1: SVPLIFIED REPRESENTATION OF THE STRESS CONCENTRATION AROUND FRACTURE TIps. — (I, 6) are polar coordinates at the fracture tiif9) is
a function determined by the strain tensor and is indepdnofegeometric or mechanic parameteriy, is the stress intensity factor for each
displacement modem = I, I1, 111 (modified frord Pollard and Aydiri (1988)).
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Figure 2: NTERACTION BETWEEN CLOSE FRACTURES FORCES THEIR PROPAGATION PATHS TO CONVERGE TOWARDS EACH OTHER. — This has a significantfiect on
the connectivity of the fracture pattern which in turn is esfed to have a first order impact on flow (modified flom Kim é{2004)).
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dAty dAt : Attracting zone extent

Fracture in the

flactliclin the | d: distance to the fracture .
neighborhood \d, to propagate neighborhood
Pl —
! - - dAt,
Fracture to propagate ® Q - da Fracture to propagate
© dAt s
~ . .
N ds Or : overlaping ratiq

N

Fracture excluded from the neighborhood SO " Fracture excluded fromthe neighborhood N >

s N

Ny
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Figure 3: RACTURE NEIGHBORHOOD DEFINITION — Considering an initial fracture neighborhood (a), twolesion steps select fractures which will
drive its propagation. The first one (b) aims at excludingtirees which are behind of the fracture tip to propagate. Sdwnd one check the
overlaps between neighboring fracture attractive zongs Tle size of attractive zone is computed as a ratjoof the fracture area (c). (see

equatiorB, herer = 2).
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Neighboring :
Fractures fractures

Growing -
—fracture

Figure 4: 3D DFNanp sabpLe GeomeTriEs — A 3D DFN made of two sets of fractures has been grown in aeilagier using the@seudo-genetic
algorithm. (c) presents a 3D view and (d) presents fractaies on a cross-section. Because every fractures are satie layer, we reduce the
proportion of partial branching (a) and fracture with negaGaussian curvature (b).

13


http://dx.doi.org/10.1016/j.cageo.2013.02.004

Computers and Geosciences doi:10.1DG&geo.2013.02.0@2013 Computers and Geosciences

— —ao- ®
Neighboring fracture overlapping

linking vector (D) |  attractive zones
[
|
|
|

o Pcur (current direction)
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Om (orientation map)

a - Vectors driving the propagation b - Compute the total deviation vector m

¢ - Compute background orientation vector (Ob) d - Compute the propagation vector (P)

Figure 5: RopacaTiON VECTOR cOMPUTATION — The propagation vector is a linear combination of a set ofors (a). Its two main components are
the deviation vector (b) and the local stress field vectarThe deviation vector is computed by resizing the linkingtee (equatiofil6).
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Fracture directions

Uniform (0°) | | Random (0°-90°) | | Predefined map |

| No propagation (fast growth) |

Number of propagation steps (N): growth velocity

10 (slow growth)

N:

Figure 6: SnsiTivity To GROWTH VELOCITY — Tests have been performed runningpleudo-genetimethod on a horizontal layer with a homogeneous
fracture density map. For each fracture, the attractiore ®ire is set to 33% of thefective fracture sizer(=3 , equatiof B) and the cfieient
controlling the influence of the background orientatidg, €quatiori.#) has been set to 0.75.
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Figure 7: $NSITIVITY TO THE ATTRACTION ZONE SIZE AND TO THE LOCAL ORIENTATION FACTOR (Ao, EQUATION [4]) — Tests have been performed running a
five-propagation-step simulation with a uniform directemd a homogeneous fracture density map.
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Figure 8: Erypes suir Frrom 3000 DFNsmuLations — () case 1, (b) case 2 and (c) case 3
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Figure 9: DFNquanTITaTIVE sTUDY — Three sets of one hundred DFNs have been simulated, fram digpa given in Tablgl1. For each of the three
cases, (a) shows the geometry of the clusters (highlightetencolor map) and the fractures in one DFN; (b) shows $itaisn fracture length; (c)
shows statistics on fracture azimuth and (d) shows stisin connectivity. The black distribution illustrates thesrage number of intersections
per fracture If) and the gray one illustrates the percolation paramgferRracture length decreases when the number of clustersadess. The
number of intersections per fracture and so the number ofufres per cluster increases with fracture bending, whketeapercolation parameter
tends to decrease because of the growth inhibition due ¢tubeinteractions. Compared to planar DFNs, those gerteiat thepseudo-genetic
method do not reproduce perfectly input statistics, butil@ber of interconnections between fractures underlinigleeh connectivity.
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Table 1: DFN simulation parameters

Number of

Azimuth Length Ao Attraction
C Method A Lo rowth . X
ase etho distribution distribution gsteps (equatioi )  zone ratio
1 Planar . . - - -
2 PseudeGenetic (Léngég) (Lngﬁé)Er)nr;) 5 0.9 4
3 PseudeGenetic 5 0.7 2
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Table 2: DEN statistics

Case nu-rl;?kt)ilr of Average number of o’fA\i\;et;gscTiL(])rr?sbS;r Mean fracture Percolation
fractures clusters per DFN fracturel length (m) parameterf)
1 642 609 0.05 25.0 6.42
2 642 298 1.15 19.5 3.90
3 642 191 1.70 15.6 2.50
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