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Abstract

Stochastic simulation of fracture systems is an interesting approach to build a set of dense and complex networks.
However, discrete fracture models made of planar fracturesgenerally fail to reproduce the complexity of natural
networks, both in terms of geometry and connectivity. In this study apseudo-geneticmethod is developed to generate
stochastic fracture models that are consistent with patterns observed on outcrops and fracture growth principles. The
main idea is to simulate evolving fracture networks throughgeometric proxies by iteratively growing 3D fractures.
The algorithm defines heuristic rules in order to mimic the mechanics of fracture initiation, propagation, interaction
and termination. The growth process enhances the production of linking structure and impacts the connectivity of
fracture networks. A sensitivity study is performed on synthetic examples. The method produces unbiased fracture
dip and strike statistics and qualitatively reproduces thefracture density map. The fracture length distribution lawis
underestimated because of the early stop in fracture growthafter intersection.
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Introduction

Fractures are ubiquitous structures occurring in a wide variety of rock types and tectonic settings over a broad
range of scales. The average permeability of these structural heterogeneities may be a few orders of magnitude higher
or lower than those of the surrounding matrix rocks. Consequently, fractures are known to significantly impact fluid
flows.

Because the spatial characteristics of a fracture network cannot be known deterministically, they are simulated us-
ing a statistics measured field. The high uncertainty of model geometry requires simulating several networks. A lot of
methods generating stochastic fracture networks have beendeveloped (for reviews, see e.g. Jing (2003); Chilès (2005);
Dershowitz et al. (2004); Dowd et al. (2007)). To be consistent with field observations, the statistical process can be
constrained by 3D density and orientation maps derived fromseismic attributes (Dershowitz, 1984; Maerten et al.,
2000; Will et al., 2004; Freudenreich et al., 2005) and/or strain analysis (Priest and Hudson, 1976; Kloppenburg etal.,
2003). Discrete Fracture Network (DFN) models generally assume planar and rectangular fractures. Unlike geome-
chanical fracture models reproducing fracture growth and interaction (Olson, 1993; Renshaw and Pollard, 1994b;
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Tuckwell et al., 2003; Jing, 2003; Welch et al., 2009), planar discrete fracture models cannot reproduce linking struc-
tures and tend to underestimate the connectivity of the fracture network for a given fracture density.

We propose apseudo-geneticapproach for simulating 3D DFN models. It integrates insights from fracture me-
chanics within a probabilistic framework. As proposed by Gringarten (1998); Bourne et al. (2000); Hoffmann et al.
(2004); Srivastava et al. (2005), we aim at minimizing the weakness of both mechanistic and probabilistic approaches
while exploiting their strengths. We are particularly interested in reproducing the effect of mechanical interactions
between fractures and in investigating the resulting fracture network connectivity.

Thepseudo-geneticmethod focusses on tensile fractures (Mode I). Such fractures are grown starting from a prior
knowledge of fracture parameters and of rules about fracture initiation, propagation and termination. As recalled in the
section 1, a tensile fracture creates symmetrical constraint accumulation zones (Fig. 1) and grows parallel to the crack
plane. Rock heterogeneities (flaws, pre-existing fractures. . . ) alter the propagation path loading the fracture with a
mixed mode I-II (Renshaw and Pollard, 1994b; Vermilye and Scholz, 1998). Srivastava et al. (2005) use empirical
geostatistical rules inspired by geomechanics to grow fractures and fill in 2D and 2.5D fracture maps. In the same
manner, we use heuristic geometric rules to mimic mechanical fracture growth and simulate 3D DFNs (section 2).
The simulation method generates realistic fracture patterns in 3D with less computational efforts than geomechanical
simulation. The method produces multiple realizations of fracture systems by randomly sampling input statistical data
then growing each fracture using deterministic heuristic rules. In section 3, we show the impact of the method on the
connectivity and statistics of the DFN as compared to classical planar DFNs.

1. Physics of fracture growth

The simulation technique proposed in this paper is apseudo-geneticapproach which propagates fracture patterns
using heuristic rules for fracture growth instead of mechanical calculations. In order to illustrate the underlying ideas
that lead to the definition of these rules, we summarize belowsome important concepts and results about fracture
growth in the framework of Linear Elastic Fracture Mechanics (LEFM). We refer the interested reader to Atkinson
(1982); Pollard and Aydin (1988); Atkinson and Craster (1995), and references therein.

1.1. Fracture initiation

Fractures initiate at flaws for instance, fossils, grains, cavities, micro-cracks and other objects, that have elastic
properties different from those of the surrounding rock. These flaws modify the stress field in such a way that the
magnitude of local stresses at the flaw may exceed the strength of the rock, thereby initiating fractures (Fig. 1). We
reproduce this process using a heterogeneous Poisson pointprocess for fracture seeding. The fracture density cube
may come for instance from structural analysis or microseismic data (Macé, 2006; Amorim et al., 2012). As the stress
concentration around fracture tips increases with the fracture area, a fracture continues to propagate as long as there
is energy available for propagation.

1.2. Fracture propagation

The propagation of a fracture is controlled by the stress field near fracture tips. This stress field is heterogeneous,
the region of stress concentration is small and the stressesdecrease with the distance to the tip (Fig. 1). When the
fracture propagates a damage zone appears relaxing the constraints around. The zone where constraints are relaxed is
called theshadow zone(Scholz et al., 1993; Cowie and Shipton, 1998; Vermilye and Scholz, 1998; Kim et al., 2004).

All stress componentsσi j around the fracture are proportional to quantities calledstress intensity factor(Km)
(Pollard and Aydin, 1988). They measure the stress concentration which depends on the applied load and on the
fracture geometry (Fig. 1). In fracture mechanics, three loading modes are generally identified (Pollard and Aydin,
1988):

• mode I: tensile mode which characterizes opening displacement.

• mode II: shearing mode which characterizes sliding perpendicular to the fracture propagation front.

• mode III: shearing mode which characterizes sliding parallel to the fracture propagation front.

2

http://dx.doi.org/10.1016/j.cageo.2013.02.004


Computers and Geosciences doi:10.1016/j.cageo.2013.02.004©2013 Computers and Geosciences

A tensile fracture propagates when the mode I stress intensity factor (KI ) reaches a critical value for mode I loading
(KIC):

KI > KIC (1)

KIC is called the fracture toughness, and is a property of the material. Expressions for stress intensity factor combined
with the propagation criterion allow to make important inferences about the behavior of fractures:

• For two fractures of unequal areas subjected to the same driving stress, the larger joint will meet the propagation
criterion first.

• For joints with equal areas in a spatially varying stress field, the joint subjected to the greatest driving stress will
propagate first.

In the proposed simulation, the stress intensity factor is not modeled explicitly but the observations about fracture
sizes are directly translated in the growth algorithm.

1.3. Fracture interaction

Interactions between nearby fractures influence fracture growth and termination, and consequently the fracture
pattern. A fracture propagates ifKI increases (when constraint accumulation zones overlap) and/or if KIC decreases
(when a fracture is growing in damage zone) (Equation 1). Each fracture enhances the propagation of its neighbor by
inducing shear stress. As a result, fractures progressively converge towards each other and enhance fracture linkage.
This explains the common hooked-shape of en-echelon fractures (Fig. 2). Fracture interactions have an important
impact on the final geometry of the fracture network.

As the area ratio between the two interacting fractures increases, the propagation energy of the largest fracture
approaches that of an isolated fracture, while the energy for the shorter fracture falls to zero. This means that the longer
fracture deactivates the growth of nearby shorter fracture. DeGraff and Aydin (1987) reported a similar shielding effect
when parallel fractures interact. The shielding effect is taken into account in the proposed simulation algorithm which
iteratively grows fractures.

1.4. Fracture termination

Fracture termination depends on the factors that decrease or increase the energy available for propagation. Because
stress concentration at tips increases with fracture length, a fracture should not stop growing if all others factors remain
constant. Fracture propagation stops if either the fluid pressure decreases, or if remote stresses increase sufficiently.
Fracture termination may also occur depending on rock properties, for example, when a fracture propagates into a
stiffer or a less compressible rock, or when a fracture intersectsanother discontinuity such as lithologic boundary,
or another fracture (Cooke and Underwood, 2001; d'Alessio and Martel, 2004). In our approach these effects are
addressed through the input statistical law for fracture size, and by terminating fractures during propagation rather
than through a post processing (Macé, 2006).

2. Pseudo-genetic simulation of fracture network

The key aspect of thepseudo-geneticsimulation of fracture network is to replace mechanical calculations by
heuristic rules based on mechanical principles that governopening fracture growth. We consider that the curvature
observed for mode I fracture network are mainly due to the growth of neighboring fractures. We explain the fracture
growth algorithm for 2D fracture network, then discuss extensions to 3D cases.

2.1. Initial Fractures

Srivastava et al. (2005) propose to initiate fractures using a clustered point process around cracks identified from
aerial photography. Here, we initialize fracture seeds using traditional Poisson point process (Stoyan et al., 1995).Mi-
cro cracks are randomly distributed according to a density model (expected number of fractures per unit volume). As in
Srivastava et al. (2005), the fractures are not generated intheir final state but as short linear segments (in 2D) which are
then propagated. The orientations of fracture are given by astatistical distribution law or by an orientation map. Such
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local orientation may come from seismic attributes (Dershowitz, 1984; Will et al., 2004; Freudenreich et al., 2005) or
prior geological constraints and deformation analysis (curvature, strain) (Priest and Hudson, 1976; Kloppenburg et al.,
2003; Macé et al., 2004). An intended final fracture length is also drawn in a distribution law. From the expected final
length (L f ) and the number of propagation steps (k) fixed by the user, the initial length (l i) of the fracture is computed
as follows:

l i = L f /(2k+ 1) (2)

The number of propagation steps directly controls the initial fracture length and growth speed. Fixing the number of
propagation steps to 0 means that fractures get directly to their final state. It corresponds to the classical simulationof
a discrete fracture network without propagation.

2.2. Propagation process

Once fractures have been initialized, their propagation issimulated by sequential growth. Each fracture of the
network is grown by decreasing sizes. Longer fractures are first propagated to reproduce the effect of differential
growth rate among fractures (i.e. a few large fractures havethe greatest impact on the final fracture pattern (see
section 1.2)). Indeed, longer fractures having their process zones growing rapidly will affect the propagation of
smaller fractures.

Both constraint accumulation and shadow zones of fracturesact on the growth of neighboring fractures (section
1.2). The physical controls on the size of these zones are poorly understood. Estimates range from 10% to 50% of the
fracture dimension (Cowie and Shipton, 1998).

In our implementation, an attraction zone distance (dAt) is defined around each fracture to reproduce the effect
of these zones. The attraction zone is represented by a sphere centered on the closest node to the fracture tip to
propagate. The attraction zone distance (dAt) (radius of the sphere) is computed from a ratio (r fixed by the user) of
the corresponding fracture area (A):

dAt =
√

A/(π × r) (3)

The search strategy to define interacting fractures with thecurrent growing fracture is illustrated in Fig. 3. For
a free fracture tip, the space is separated by the plane normal to the current direction of propagation. All fractures
located ahead of the defined plane are browsed to check if there is an overlap between the attraction zone of the
fracture being propagated and the surrounding fracture attraction zone. At this point, our implementation does not
distinguish between the constraint accumulation zone and the shadow zone of neighboring fractures. A very simple
way to achieve this is to stop fracture propagation when it enters the shadow zone of another fracture.

For each fracture, its free tips are propagated by a fixed steplength (l i in Equation (2)). The direction of propa-
gation (~P) depends on: (1) the possible interactions between the extremity being propagated and nearby fractures (~I)
and (2) the background orientation (~Ob). The influence of each component is controlled by a weighting factor (λ0)
(Fig. 5 (d)):

~P =
(

(1− λ0).~I + λ0. ~Ob

)

.l i (4)

The background orientation (~Ob in equation 4) takes into account both the fracture mechanical inertia through the
current propagation vector (~Pcur) and possibly a local orientation map (~Om), if any. The current growth direction of
the fracture is adjusted considering an optional orientation map by a weighting factor defined by the user (ξ0) (Fig. 5
(c)).

~Ob = (1− ξ0). ~Pcur + ξ0. ~Om (5)

The deviation (~I ) is computed as the mean orientation of the vectors linking the extremity being propagated and
the closest points of the fractures contained in the neighborhood. These linking-vectors are noted~Di (Fig. 5 (a)).
Srivastava et al. (2005) use a distance-based technique weighted by a kriging approach to define the contribution of
each linking-vector in the computation of the mean deviation vector. Considering that fracture curvature is mainly
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due to the fracture interaction stress (Renshaw and Pollard, 1994a), we introduce weight linking-vectors (~Di) by an
inverse distance weighting ratio (λi) (Fig. 3 (c) and (d)):

~I =
∑

i

λi × ~Di with: λi = (Ori/di)/
∑

j

(Or j/d j) and Ori = dAt + dAti − di (6)

For each interacting fracture, the overlapping ratio (Ori) quantifies the extent of the overlap between attracting
zones. Then an inverse distance interpolation weighted byOri sets the impact of interacting fracture on the growth.

Finally, the free tip is propagated by its fixed step size (l i see equation 2) in the new direction of propagation.
Propagation vectors (~P in equation 4) are computed and applied at each fracture tip to evaluate new ones. New line
segments (in 2D) or new surface elements (in 3D) are created between old and new tips.

2.3. Fracture Termination

Fracture propagation stops when the fracture reaches its intended final length (i.e. at the maximum number of
propagation steps) or when it intersects another fracture or another discontinuity such as a bedding plane. It is also
possible to allow crossings. Therefore a truncation probability is used to control the proportion of fractures which
terminate on pre-existing mechanical discontinuities.

Stopping fractures propagation does not guarantee that theoutput length distribution exactly matches the input
one. This also happens in classical DFN approaches when fractures are post-processed to respect a given hierarchy.
We will quantify the bias on fracture length in section 3. It is however important to note, that the sizes of the fractures
are often very uncertain since borehole data provides only indirect information and analogs may not be available.

2.4. Extensions to 3D

The application of the method in 3D is based on a description of fractures as rectangles. Best results are obtained
using a 2.5D approach for each fractures in which the 2D algorithm is applied along strike and the fracture is ex-
trapolated linearly in the dip direction. Our experiments applying the same propagation rules in both strike and dip
directions often yield fractures which have a saddle geometry (Gaussian curvature< 0) (4 (b)).

Another open problem in 3D is the partial branching of fractures, whereby two fractures intersect only a part of
the total fracture edge (4 (a)). In that case it is possible tostop the propagation once the contact is detected.

For these reasons, we consider the algorithm best works whenall fractures are seeded in the same layer (4 (c) et
(d)).

3. Examples and sensitivity analysis

Thepseudo-geneticmethod sets the global DFN geometry with statistics and calibrates it locally using a fracture
growth process. The growth offers three different input parameters which control the fracture geometry:

• The fracture growth velocity (set by the number of propagation stepsN).

• The weight of the background orientation vector (set by the weighting factorλ0, equation (4)).

• The attraction zone extent (set by the ratior, equation (3)).

An infinite number of different networks can be generated with the described set of parameters (input statistics
and growth parameters). We describe the effect of growth parameters on fracture geometry by selecting few values
for each parameterN, λ0 andr. We consider the corresponding DFN properties qualitatively and quantitatively.
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3.1. DFN qualitative study: 2D-Example

In this part, visual criteria are used to describe output DFNgeometries. We particularly focus on fracture length,
bending, and on the number of clusters. Fig. 6 (a), (b) and (c)show fracture networks obtained by classical DFN
simulations (without growth), which is our reference case to study the effect of fracture growth on input statistics and
fracture clustering. Fig. 6 (a) shows a DFN made of parallel planar fractures with no connection. This is unrealistic
regarding the fracture growth principles described in section 1. On the contrary, Fig. 6 (b) and (c) show DFNs for
which almost all fractures are connected to at least anotherfracture. Those are not realistic either because fracture
geometry is set independently for each fracture without considering any interactions between fractures. A lot of
fractures are intersecting one or several others without being affected.

Increasing the number of propagation steps (N) leads to an increase in the number of times the fracture interactions
are evaluated. Fig. 6 (d), (g) and (j) show howN impacts the fracture geometry on a planar DFN with a constant
orientation. WhenN increases, fracture bending increases as well as fracture interconnections. Thus, the number of
clusters decreases. On Fig. 6 (e), (h), (k) and (f), (i), (l),an increase ofN has the same effect on fracture bending,
but the number of clusters tends to increase when compared toplanar DFNs. This can be explained because we stop
fracture growth when the fracture is branching on another one. Then, one fracture cannot cross several fractures.

The number of propagation steps (N) influences fracture interactions. Fracture deviation is computed at each
propagation step, so deviation effects compound. As a result, fracture geometries may be strongly curved with high
value ofN. Fig. 7 further explores the effect of attraction zone extent (r), and the weighting factor setting the influence
of these fractures in the deviation computation (λ0). Whenr increases, the deviation is computed from closer fractures
reducing curvature of fractures and changing the overall connectivity of the network for fixed fracture centers. When
λ0 increases, the deviation effect is reduced, leading to more linear fractures.

From Fig. 6 and 7, we can observe that growth parameters impact fracture bending and branching. A branching
contact between two fractures stops the growth. As a consequence, fracture length is reduced, the number of fractures
per cluster increases and the number of clusters decreases.

3.2. DFN quantitative study

The algorithm parameters have a direct impact on the fracture network emergent parameters such as connectivity
or size of non-fractured blocks. Over a large number of DFN realizations, it is possible to quantify how such fractures
evolve with input growth parameters. Therefore, we have generated three different kinds of DFNs and compared
their statistics on a hundred realizations. Each DFN is composed of vertical fractures simulated on a homogeneous
fracture density map and constrained by input parameters assummarized in Table 1. The order of magnitude spanned
by distributions of natural fracture network is very large (e.g. 10cm – 100m). In these examples, we chose a narrow
uniform length distribution law (from 15 to 35 m) to perform avisual study of fracture interactions.

3.2.1. Quantitative study of fracture properties
Statistics on DFN properties evaluated from cases 2 and 3 (Table 1) are compared to those from classical DFN

simulation which perfectly honors input statistics (case 1, Table 1). Fig. 9 and Table 2 gather the results of the three
different cases in terms of fracture (length, azimuth) and fracture network parameters (average number of clusters per
DFN, connectivity). The bending of fractures slightly spreads input azimuth distribution but the principal directionis
kept (Fig. 9 (c)). The main impact of the method is to decreasethe length of fracture because of the growth inhibition
due to fracture interactions (Fig. 9 (b) and (c)). We observethat this bias of length is higher when the range of the input
length distribution is wider. A possible strategy to alleviate this truncation effect could be to continue the propagation
of lager fractures when they intersect smaller ones.

Because thepseudo-geneticmethod changes the fracture length distribution (creatingsmaller fractures), it is worth
checking the fracture density map for possible bias. The DFNs presented here are simulated from a homogeneous
fracture density map, and should therefore reproduce a random object implantation (Stoyan et al., 1995), and E-types
obtained frompseudo-geneticsimulations should be homogeneous. Three thousands simulations have been performed
for each case (table 1) and the E-types were built (Fig. 8) by rasterizing each fracture trace on the Cartesian grid and
computing the experimental probability for each grid cell to be intersected by a fracture. They show that the method
reproduces an homogeneous fracture density map. However, the density values observed for the E-type of planar
DFNs (Fig. 8 (a)) are higher than the ones obtained with thepseudo-geneticmethod (Fig. 8 (b) and (c)). To reduce
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this bias we are working on a method in which fractures will beimplanted and grown until the expected density is
reached.

3.2.2. Quantitative study of fracture connectivity
Connectivity is a crucial parameter to investigate becauseof its direct impact on fluid flow. It can be defined locally

as a two point connectivity (Renard et al., 2011) or at globalscale following the percolation concept. Robinson (1983,
1984) found that the right invariant to quantify the fracture network connectivity is the average number of intersections
per fractureI f (Table 2). He computes a percolation threshold of approximatively 3.6 intersections per fracture. This
result has been computed independently of any orientation anisotropy. It means that even if the fracture network
presents a preferred strike or orientation, if the average number of intersections per fracture exceeds 3.6, at least one
connected fracture swarm crosses the model. Bour and Davy (1997, 1998) propose a unique percolation parameterp
(equation 7) to describe the network connectivity:

p = (
n
∑

i=1

l3i )/V (7)

wheren is the total number of fractures in the network,l i the fracture length andV the volume of the system. The
parameterp represents the effective connectivity of the network. The proportion of fractures inside the volume of
interest is evaluated. Considering planar fractures with random orientations, Bour and Davy (1998) define a length and
a density parameter to fix an effective connectivity. Bour and Davy (1997, 1998) compute thepercolation threshold
which has to be calibrated for non random strike distribution law.

Table 2 quantifies the network connectivity for the cases presented in Table 1. For each case, we start from the
same length distribution law, fracture density map, and seed to initialize the Poisson point process. As a consequence,
the same number of fractures is simulated. For cases 1 to 3 parameters are set in order to increase the fracture
bending. This also reduces the number of clusters and increases the average number of intersections per fracture
I f . Compared to planar DFN simulation, thepseudo-geneticmethod considerably increases fracture intersection
probability and creates DFNs closer to the percolation threshold proposed by Robinson (1983, 1984). However, we
observe a diminution of the percolation parameter (p) when the number of connections per fracture increases. This is
due to the linking process that stops the growth process and underestimates both the length distribution law and the
fracture density map.

In a fracture network, both the number of connections and thefracture density have an impact on the connectivity.
De Dreuzy et al. (2001); Davy et al. (2010) perturb fracture length distribution law and density parameters to enhance
fracture interconnections and so rock permeability. Our method allows an increase of interconnections even if we
simulate fractures with preferred orientation. The early stop of fracture growth brings bias to the length distribution
law and the fracture density map. We are currently working onthis problem because it impacts connectivity and fluid
flow.

Conclusion

A stochastic approach enables the building of a large set of DFN constrained by statistics from field observations.
It is difficult to characterize these models because we have no algebraic parameters to quantify DFN quality. In this
work we test how simulated DFN honor conditioning data, particularly by considering fracture parameters distribution
law. Our method relies on apseudo-geneticsimulation to generate DFNs. It increases the consistency with natural
analogs but does not perfectly honor conditioning statistics. However, the huge uncertainties associated to input
statistics justify their approximation. In the spirit of Barbier et al. (2012) who propose a parameter to characterize
fracture spacing, new tools have to be implemented to improve DFN characterization.

Most of the authors propose the assumption of planar fractures. This underestimates the proportion of linking
structures and acts on DFN parameters especially in terms ofconnectivity and flow. However, we have shown that
taking albeit approximately the fractures interaction andsinuosity into account has a significant impact on connectivity
measures. The natural reservoir connectivity is difficult to estimate and to use as conditioning data. That is why an
important further step would be to calibrate parameters with dynamic data.

Finally, more research needs to incorporate genetic concepts in DFN simulation to bridge the gap between ap-
proaches in characterization of fractured rocks.
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Figure 1: Simplified representation of the stress concentration around fracture tips. – (r, θ) are polar coordinates at the fracture tip,f (θ) is
a function determined by the strain tensor and is independent of geometric or mechanic parameters.Km is the stress intensity factor for each
displacement mode :m= I , II , III (modified from Pollard and Aydin (1988)).
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Figure 2: Interaction between close fractures forces their propagation paths to converge towards each other. – This has a significant effect on
the connectivity of the fracture pattern which in turn is expected to have a first order impact on flow (modified from Kim et al. (2004)).
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Figure 3: Fracture neighborhood definition – Considering an initial fracture neighborhood (a), two exclusion steps select fractures which will
drive its propagation. The first one (b) aims at excluding fractures which are behind of the fracture tip to propagate. Thesecond one check the
overlaps between neighboring fracture attractive zones (d). The size of attractive zone is computed as a ratio (r) of the fracture area (c). (see
equation 3, here:r = 2).
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Figure 4: 3D DFNand saddle geometries – A 3D DFN made of two sets of fractures has been grown in a single layer using thepseudo-genetic
algorithm. (c) presents a 3D view and (d) presents fracture traces on a cross-section. Because every fractures are in thesame layer, we reduce the
proportion of partial branching (a) and fracture with negative Gaussian curvature (b).
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Figure 5: Propagation vector computation – The propagation vector is a linear combination of a set of vectors (a). Its two main components are
the deviation vector (b) and the local stress field vector (c). The deviation vector is computed by resizing the linking vector (equation 6).
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Figure 6: Sensitivity to growth velocity – Tests have been performed running thepseudo-geneticmethod on a horizontal layer with a homogeneous
fracture density map. For each fracture, the attraction zone size is set to 33% of the effective fracture size (r =3 , equation 3) and the coefficient
controlling the influence of the background orientation (λ0, equation 4) has been set to 0.75.
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five-propagation-step simulation with a uniform directionand a homogeneous fracture density map.
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Figure 8: Etypes built from 3000 DFNsimulations – (a) case 1, (b) case 2 and (c) case 3
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Figure 9: DFNquantitative study – Three sets of one hundred DFNs have been simulated, from input data given in Table 1. For each of the three
cases, (a) shows the geometry of the clusters (highlighted by the color map) and the fractures in one DFN; (b) shows statistics on fracture length; (c)
shows statistics on fracture azimuth and (d) shows statistics on connectivity. The black distribution illustrates theaverage number of intersections
per fracture (l f ) and the gray one illustrates the percolation parameter (p). Fracture length decreases when the number of clusters decreases. The
number of intersections per fracture and so the number of fractures per cluster increases with fracture bending, whereas the percolation parameter
tends to decrease because of the growth inhibition due to fracture interactions. Compared to planar DFNs, those generated by thepseudo-genetic
method do not reproduce perfectly input statistics, but thenumber of interconnections between fractures underline a higher connectivity.
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Table 1: DFN simulation parameters

Case Method Azimuth
distribution

Length
distribution

Number of
growth
steps

λ0

(equation 4)
Attraction
zone ratio

1 Planar
Uniform
(80-100˚)

Uniform
(15-35m)

− − −

2 Pseudo−Genetic 5 0.9 4
3 Pseudo−Genetic 5 0.7 2
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Table 2: DFN statistics

Case
Total

number of
fractures

Average number of
clusters per DFN

Average number
of intersections per

fractureI f

Mean fracture
length (m)

Percolation
parameter (p)

1 642 609 0.05 25.0 6.42
2 642 298 1.15 19.5 3.90
3 642 191 1.70 15.6 2.50
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