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Abstract

Depending on the specific method used to build a 3D structural model, and on the

exact purpose of this model, its mesh must be adapted so that it enforces criteria on

element types, maximum number of elements, and mesh quality. Meshing methods

developed for applications others than geomodeling forbid any modification of the

input model, that may be desirable in geomodeling to better control the number of

elements in the final mesh and their quality.

The objective of this thesis is to develop meshing methods that fulfill this re-

quirement to better manage the geometrical complexity of B-Rep geological struc-

tural models. An analysis of the sources of geometrical complexity in those models

is first proposed. The introduced measures are a first step toward the definition of

tools allowing objective comparisons of structural models and permit to characterize

the model zones that are more complicated to mesh. We then introduce two original

meshing methods based on Voronoi diagrams: the first for surface remeshing, the

second for hybrid gridding. The key ideas of these methods are identical: (1) the use

of a centroidal Voronoi optimization to have a globally controlled number of elements

of good quality, and (2) combinatorial considerations to locally build the final mesh

while sometimes modifying the initial model. The surface remeshing method is au-

tomatic and permits to simplify a model at a given resolution. The gridding method

generates a hybrid volumetric mesh. Prisms and pyramids fill the very thin layers of

the model while the remaining regions are filled with tetrahedra.
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Introduction

From 2D models to 3D structural models

Understanding the 3D organization of subsurface rock units is crucial in domains

such as the exploration, the exploitation, and the protection of natural resources:

water, minerals, oil and gas. Except on outcrops, we cannot see the subsurface, and

restricted information is available to understand its organization. That is often why

a geological map is determined. This map gives at each point of Earth’s surface the

outcropping rock type (figure 1a). It is established by geologists from the interpo-

lation of localized field observations. The depth organization of the rock units is

characterized by vertical cross-sections. We can see that, in the area represented on

figure 1b, subsurface rocks are organized in layers. These layers are separated by

lines called horizons and are cut by faults. Layers 2, 3 et 4 are partly eroded. This

current configuration is the result of an history that geologists reconstitute when they

determine these maps and cross-sections (figure 2).

Geological maps and cross-sections are models of real settings, representing them

schematically in two dimensions. However, subsurface rock organization is volumet-

ric. The corresponding models are called structural models, they are 3D geological

maps which give one rock type for each point of the subsurface (figure 3). Like a

digital picture in which each pixel is associated to a color, a structural model may

be cut into voxels, each of them being associated to a rock type (figure 3a). Another

possibility is to only represent the surfaces (horizons, faults, erosions, etc) delim-

iting the different rock volumes. This boundary representation (B-Rep) allows the

modeling of almost all natural complex configurations.

Goals of meshes in geomodeling

Whichever the representation of a structural model, a mesh is used to store and

visualize this model on a computer. A mesh is a set of elementary geometrical shapes

(squares, triangles, cubes, tetrahedra, etc) that do not intersect and which union

approximate the studied object. It is defined by the vertices of these shapes and by

the rules used to link these vertices. For example, the model on figure 3a is meshed

by cubes. If the size of these cubes is too big, the image of the geological structures

is, like a low resolution digital picture, not precise.

Meshes are also necessary to answer engineering problems, such as the evaluation

of the impact of a tunnel on the stability of the surrounding rocks. Using the ade-

quate physic theories, this problem can be transformed into a mathematical problem.

In most cases, this mathematical problem cannot be solved, and a mesh is used to de-

termine an approximated version of the problem that is then solved numerically. This
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100m
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rock type 4
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horizons
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erosion
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Figure 1: 2D models: a map and a cross section. The map gives a top view on
the outcropping rock type, while the cross section give a view on their depth organization.
The lines (surfaces in 3D figure 3) delimiting two different layers are called horizons. These
horizons are folded and cut by two faults. The erosion line determines the topography of the
area.

Figure 2: Cross-section view on the deformations of the layers from figure 1
since their deposition.
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(a)

(b)
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Horizons
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Figure 3: Two representations for a 3D structural model. This synthetic model
corresponds to the map and the cross-section from figure 1. (a) Volumetric representation:
the model is cut into cubes, each one having the color of the associated rock unit. (b) Bound-
ary representation: only the surfaces delimiting rock units are represented. The surfaces
delimiting the area of interest (box) are not displayed.
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A B

100m

100m

10m

10m(a) (b)

Figure 4: Two challenges for structural model meshing. (a) The blue layer is very
thin and cannot be meshed with triangles whose edge lengths are above 5m in this area.
(b) The angle in the red layer is 16 degrees, so to respect its the layer boundaries at least
one triangle in the mesh must have an angle of 16 degrees.

is the second objective of meshes : allow numerical simulations aiming at mimicking

a natural behavior.

Challenges for mesh generation

When the hypotheses on which rely the transformation of the engineering problem

to the numerical simulation result are not verified, this result may be significantly

different from the real behavior. To obtain reliable results in a reasonable time,

the mesh must represent the model precisely enough and respect a set of quality

criteria on the number, aspect, and size of its elements. These two requirements

are contradictory. It is not always possible to mesh all model components having

an impact on the solution and, at the same time, respect these quality criteria. For

example, a model in which a layer has locally a thickness of 5m cannot be meshed

with triangles that have edges measuring at least 10m (figure 4a). Similarly it will not

be possible to generate elements with angles above 30 degrees if the model contains

an angle of 16 degrees (figure 4b).

In those cases, a choice must be made to obtain the best compromise between

the precision, reliability, and robustness of the results, and the memory needs, and

computational time. A priori, decreasing the constraints on mesh quality (greater

number of elements, smaller elements) increases computational time and memory

needs, but increases the result precision. Modifying the model geometry (lower level

of detail) allows meshing it with less elements while simplifying components that

may have a negative effect on the numerical solution, but the risk is to decrease the

result precision. Ideally, to take a decision, results obtained for different meshes for

different model resolutions should be compared. This requires to have automatic

tools to (1) modify and mesh a model at a given resolution with elements having

the desired quality, and (2) evaluate the differences between the result and the real

behavior. This thesis is related to the first point and gives possible answers to the

following questions:
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Figure 5: Use of a Voronoi diagram subdivision to analyze, modify and mesh a
boundary model. This thesis focuses on the building of a mesh in the cases where the
model subdivision by the Voronoi diagram is coarse, i.e. when the intersections with model
boundaries may be complex. The objective is to generate either a mesh of the simplified
model (1) or a mesh of the initial model (2) in which the number of elements is controlled.

• How to characterize the level of detail of a geological model in three dimensions

and how to identify its small characteristics ?

• How to automatically modify the level of detail of a model and simplify its

small characteristics ?

• How to mesh a model (surfaces and volumes) when the required elements size

is bigger than the model resolution ?

Strategy

We use a subdivision of the model by a Voronoi diagram to analyze its geometry

and its connectivity, and to generate a mesh of its surfaces and volumetric regions

(figure 5). A Voronoi diagram is defined for a set of points, to each point it associates

the part of the model (the Voronoi cell) closer to this point than to any other point.

From the Voronoi diagram and its intersections with the model boundaries a meshes

of the surfaces and of the volumetric regions can be built (figure 5).

We propose strategies to build a mesh in all possible configurations for the in-

tersections of a model with a Voronoi diagram. Indeed, according to the Voronoi

cell resolution, the intersections with the model boundaries are more or less compli-

cated (figure 5). This approach allows us to control the number of elements in the

final mesh and to modify the model (figure 5). The difference between the model

resolution and the mesh resolution can thus be reduced.
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After the definitions of the geometrical objects on which this work is based (chap-

ter 1), we describe the objectives of meshes and the available meshing methods (chap-

ter 2). In chapter 3, we propose measures of the geometrical complexity of structural

models. Then we propose a surface remeshing method (chapter 4) that permits to

control the number of elements in the mesh, to simplify the model, and to generate

triangles as equilateral as possible. This method is extended in chapter 5 to generate

a hybrid volumetric mesh of a structural model. Prisms and pyramids are used to

fill the thin layers of the model, while the rest of it is meshed with tetrahedra.

Contributions

The contributions presented in this thesis are:

• measures helping the identification of small geometrical characteristics in geo-

logical models. They are described in chapter 3. This work is not published at

this time.

• a mesh building method to remesh the surfaces defining a boundary model

from the intersection of a Voronoi diagram with these boundaries. This work

is presented in chapter 4, and published in Pellerin et al. [2014], a preliminary

version was presented in Pellerin et al. [2011] ;

• a strategy to build a hybrid mesh (prisms, pyramids et tetrahedra) of the regions

of a boundary model from a Voronoi diagram and its intersections with the

model boundaries that is described in chapter 5. A short version of this work

was presented in Pellerin et al. [2012].

Publications

J. Pellerin, B. Lévy et G. Caumon : Topological control for isotropic remeshing of

nonmanifold surfaces with varying resolution: application to 3D structural models.

In Proc. IAMG. cogeo@oeaw-giscience, sept. 2011.

J. Pellerin, B. Lévy et G. Caumon : A Voronoi-based hybrid meshing method. In

International Meshing Roundtable, Research Notes, oct. 2012.

J. Pellerin, B. Lévy, G. Caumon et A. Botella : Automatic surface remeshing of

3D structural models at specified resolution: A method based on Voronoi diagrams.

Computers & Geosciences, 62(0):103 – 116, 2014.



Chapter 1

Fundamental geometrical objects

In this chapter we define the geometrical objects that are used by many meshing

methods and on which this work is based. They are related to the Voronoi diagram,

a fundamental structure of geometry, see Aurenhammer [1991] and Okabe et al.

[2009].

1.1 Voronoi diagram and Delaunay triangulation

1.1.1 Voronoi diagram

A Voronoi diagram [Voronöı, 1908] is a space subdivision into several regions defined

from a set of points, called sites and denoted S. Each site, p ∈ S, corresponds to one

region, called Voronoi cell, that includes all the points of the space that are closer of

this site p than to any other site q (figure 1.1). Formally, when the considered space

is R2, and when the proximity between a point x and a site p is measured by the

Euclidean distance between these two points ||x− p||, the Voronoi cell of p is defined

by:

Vp = {x ∈ R2, ||x− p|| ≤ ||x− q||, q ∈ S} (1.1)

The set of the Voronoi cells is the Voronoi diagram of S (figure 1.1a). Voronoi

cells are convex closed polygons that are bounded or not, and cover the space without

overlapping. Their edges, called Voronoi edges, are the points equidistant from two

neighboring sites. Cell vertices, or Voronoi vertices, are the points equidistant from

three neighboring sites (figure 1.2). These definitions can be generalized to higher

dimensions. In this thesis, we stop at three, in R3, the regions corresponding to

the sites are polyhedra (figure 1.3). Their facets, Voronoi facets, are the points

equidistant from two neighbor sites; they are included in the mid plane of these two

sites. Edges are shared by three Voronoi cells and vertices by four cells (figure 1.4a).

It is important to note that the above given definition is only correct when all sites

S are in general position, i.e. there is no four cocircular sites, and no five cospherical

points. These degenerated cases disappear with an extremely small perturbation of

site positions, that may only be symbolic [Edelsbrunner et Mücke, 1990]. In the

following of this thesis, we assume that the sites are in general position.

Remark : A lot of Voronoi diagram generalizations have bee developed changing the

distance measure between two points, changing site nature etc, see the reviews of
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(a) (b) 

Figure 1.1: Voronoi diagram and corresponding Delaunay triangulation in the
plane. (a) The Voronoi diagram of the 21 sites (black dots) is a set of 21 convex polygons that
covers the plane, the 5 cells intersecting the border are indeed infinite. (b) The corresponding
Delaunay triangulation triangulates the convex envelope of the sites.

A

B

C

V

A

B

C

V

3

2

1

3

2

1

Figure 1.2: 2D Voronoi-Delaunay dual relationship. Voronoi vertex V is shared by
three Voronoi cells: A, B, and C. It corresponds to a Delaunay triangle ABC, which vertices
are sites and which edges correspond to Voronoi edges (number 1 to 3).

[Okabe et al., 2009] and Aurenhammer [1991]. It is also possible to work in non

Euclidean spaces, for example the one defined by a surface embedded in a 3D space.

1.1.2 Delaunay triangulation

A second object extremely interesting in a meshing context can be built from a

Voronoi diagram: the Delaunay triangulation. We saw that, in the plane, in general

position, each Voronoi vertex is equidistant from three sites. The triangle connecting

these sites is a Delaunay triangle and the Delaunay triangulation is the set of the

triangles corresponding to Voronoi vertices (figure 1.1b). The Delaunay triangulation

of sites S is said dual of the Voronoi diagram of sites S because, to each Voronoi cell

corresponds a triangulation vertex, to each Voronoi edge corresponds a triangulation

edge, and to each Voronoi vertex corresponds a Delaunay triangle (figure 1.2). De-

launay triangulation definition can also be generalized in higher dimensions. In a

three dimensional space, Delaunay tetrahedralization has one edge for each Voronoi

facet, one triangle for each Voronoi edge and one tetrahedron for each Voronoi vertex

(figure 1.4).

The Delaunay triangulation of a point set S is also defined independently of the

Voronoi diagram by the empty ball or Delaunay criteria [Delaunay, 1934] that states

that, in R2, a triangle is Delaunay if its circumscribed circle does not contain any
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Figure 1.3: 3D Voronoi diagram. (a) 200 sites are distributed in a box. (b) Solid slice in
the Voronoi diagram of the sites cut by the box. (c) One Voronoi cell.
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Figure 1.4: 3D Voronoi-Delaunay dual relationship. (a) Voronoi vertex V is equidis-
tant from the sites of cells A, B, C and D. (b) To each Voronoi facet containing V (numbers
1 to 6) corresponds one segment linking the sites of the 2 cells sharing the facet. (c) To each
Voronoi edge containing V (numbers 1 to 4) corresponds a triangle linking the sites of the 3
cells sharing this edge.
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other point of S than its own vertices. The mathematical properties of Delaunay

triangulation made it a favored object of study in meshing (partie 2.3).

1. The open circumscribed balls to Delaunay triangulation simplices1 do not con-

tain any point of S. This empty ball (also called Delaunay) criterion is con-

nected with a lemma that gives that, for any triangulation of S, if the empty

ball criterion is true for each pair of adjacent elements, then it is true for all its

elements [Delaunay, 1934].

2. For any point set S in general position, its Delaunay triangulation exists and

is unique.

3. The Delaunay triangulation maximizes the minimal angle of the triangulation

of S.

1.1.3 Voronoi diagram computation

Computing the Voronoi diagram of a point set can be done either directly, or by

computing the dual Delaunay triangulation. See the reviews of Fortune [1992], Okabe

et al. [2009], Boissonnat et Yvinec [1995] for a description of the main methods, and

the implementations of TetGen2 or CGAL3.

1.2 Restricted Voronoi diagram and restricted Delaunay

triangulation

1.2.1 Restricted Voronoi diagram

Definitions

A Voronoi diagram subdivides the space in which it is defined into convex regions.

So it also subdivides any object included in that space. This subdivision is called

the restricted Voronoi diagram. For a set of sites S and an object Ω the restricted

Voronoi diagram is defined as the intersection of the Voronoi diagram of S with Ω4.

Two examples are given figures 1.5b and 1.5e. The intersection of a Voronoi cell,

Vp, with the object Ω is called the restricted Voronoi cell of p to Ω and is defined by

Vp∩Ω = Vp ∩ Ω. Restricted cell dimension depends on the object dimension, restricted

cells to the star are surfaces (figure1.5b), while restricted cells to its contour are lines

(figure 1.5e).

The intersection of a Voronoi edge with the object is a restricted Voronoi edge,

the intersection of a Voronoi facet with the object is a restricted Voronoi facet, and

the intersection of a Voronoi vertex and the object is a restricted Voronoi vertex. To

the contrary of Voronoi diagram elements, the ones of a restricted Voronoi diagram

do not always have only one connected component, i.e. there are at least two points

in the same element that cannot be connected by a path included in that element. For

1Triangles in R2 and tetrahedra in R3.
2http://wias-berlin.de/software/tetgen/
3http://www.cgal.org/
4In other papers, when the object and the space containing it have the same dimension (figure 1.5c)

the restricted Voronoi diagram is also called clipped Voronoi diagram.

http://wias-berlin.de/software/tetgen/
http://www.cgal.org/
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Figure 1.5: Restricted Voronoi diagram and restricted Delaunay triangulation.
(b) Restricted Voronoi diagram to a star (a). (c) The corresponding restricted Delaunay
triangulation meshes the star. (e) Restricted Voronoi diagram to the star contour (d). (f) The
corresponding restricted Delaunay triangulation is a sub-set of the one for the star (c). As
the Voronoi cell of the site at the star center does not intersect the contour, the restricted
Delaunay triangulation does not contain this site.

example, for the restricted Voronoi diagram to the star contour, figure 1.5e, restricted

cell in star branch center have two connected components- two segments.

Degenerated cases

On the star example, figure 1.5, restricted Voronoi cell dimension is the same one

than the star’s, that is three. This equality is only true if degenerated intersections

between the Voronoi cell and the object, i.e. intersections restricted to a unique

point or to an edge, are excluded (figure 1.6). This should also be true for the

intersections of all Voronoi diagram elements (cell, facet, edge, and vertex) with

the object. In a d dimensional space, a Voronoi diagram element of dimension l

generically intersects an object of dimension m, if this intersection has the expected

dimension: m + l − d. In R3, intersections of Voronoi cells, facets, edges, vertices

with a surface must respectively be of dimension two (surface parts), one (line parts),

zero (points), and empty [Edelsbrunner et Shah, 1997]. The intersections between

a Voronoi vertex and any line or surface are excluded. According to Edelsbrunner

et Shah [1997], these assumptions are reasonable and we suppose them true in this

thesis. Nevertheless we will see at the end of chapter 4 that the most part of issues

encountered when computing a mesh from a restricted Voronoi diagram are connected

with configurations close to degenerated ones.
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Figure 1.6: Degenerated intersections between a Voronoi cell and a rectangle.
Cell A intersects the rectangle at a unique point. Cell B intersects the rectangle along one of
its edges.

1.2.2 Restricted Voronoi diagram computation

When the object is defined by its boundaries, the computation of its intersection with

a Voronoi diagram is complex. Lévy et Liu [2010] propose a method valid for vol-

umes defined by their boundary surface in 3D, but it lacks robustness to degenerated

configurations [Merland, 2013]. When the object is meshed, the restricted Voronoi

diagram computation is easier.

In this thesis, we are interested by the restricted Voronoi diagram to a 3D surface.

To compute it, we use the method originally developed by Yan et al. [2009], that

was improved by Nivoliers [2012]. The fundamental operation is to compute the

intersection between one surface triangle and one Voronoi cell. As a Voronoi cell

can be defined by the intersection of mid planes between its site and its closest

neighbor sites, it is sufficient to cut the triangle by each of these planes. To compute

only once the intersection between one triangle and one Voronoi cell and improve

the performances two propagations strategies through triangle-site pairs are possible,

they are detailed by Nivoliers [2012].

1.2.3 Restricted Delaunay triangulation

Restricted Delaunay triangulation is defined as the restricted Voronoi diagram dual,

similarly to the dual definition of the Delaunay triangulation. In R2, the restricted

Delaunay triangulation has one vertex for each restricted cell, one segment for each

restricted edge, and one triangle for each restricted Voronoi vertex (figures 1.5c and f).

A restricted Delaunay triangulation is then constituted of the Delaunay triangu-

lation elements that are dual of Voronoi diagram elements intersecting the considered

object. Its triangles, edges, and vertices (figure 1.5c) are a subset of the Delaunay

triangulation (figure 1.1). Indeed, the restricted Voronoi diagram is by definition a

subset of the Voronoi diagram.

Let’s consider the restricted Voronoi diagrams to two objects A and B such that

A is included in B. The restricted Voronoi diagram to A is a subset of the restricted

Voronoi diagram to B and the same is true for the restricted Delaunay triangula-

tions. So, the same sites can be used to conformably triangulate, i.e. the interiors

of the two triangulations do not intersect, two objects of possibly different dimen-

sions. For example, segments of the restricted Delaunay triangulation to the star

contour (figure 1.5f) are included in the restricted Delaunay triangulation to the star

(figure 1.5c).

When restricted Delaunay triangulation elements are not in the boundary of an
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Figure 1.7: Topological balls and manifold spaces in the plane.

element of higher dimension, for example segments in star branches, figure 1.5c, the

restricted Delaunay triangulation is then a multi-dimensional object that may be

seen as a simplified version of the initial object.

1.2.4 Restricted Delaunay triangulation topology

The topological ball property introduced by Edelsbrunner et Shah [1997], give a cri-

terion to guarantee that the restricted Delaunay triangulation has the same topology

(is homeomorphic) than the input object and is not a simplified version of it.

Preliminary definitions

Two topological spaces X and Y are homeomorphic, if a continuous bijective appli-

cation from X to Y which inverse is continuous exists. An open k-ball is a space

homeomorphic to Rk (figure 1.7). A open k-half ball is a space homeomorphic to the

half space Hk = {x = (ξi) ∈ Rk | ξi ≥ 0}. A closed k-ball is a space homeomorphic

to Bk = {x ∈ Rk | ||x − O|| ≤ 1}. The neighborhood of a subset Y included in X

is a subset of X that contains Y. The space X included in Rd is k-manifold without

boundary if all its points have an open k-ball neighborhood, it is an open k-manifold

with boundary if all its points have a k-ball or a k-half ball neighborhood (figure 1.7).

The set of points that do not have an open k-ball neighborhood is the boundary of

X, and the set of points that do constitute its interior.

Topological ball property

A finite non-degenerated point set of Rd, S, has the topological ball property [Edels-

brunner et Shah, 1997] for the bounded closed m-manifold, X ⊆Rd, if for each l ≤ m
and each subset of m+ 1− l points T ⊆ S:

• the intersection between X and the points shared by the Voronoi cells of sites

T is either empty, or a closed l-ball;
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Figure 1.8: Voronoi cells verifying or not the topological ball property. Cells
A, B, C, G have two connected components. Cells D and F are disks, but their intersection
with the model boundaries (gray line) have two connected components.

• the intersection between X boundary and the points shared by the Voronoi cells

of sites T is either empty, or a closed l − 1-ball.

This means that a non-degenerated point set S has the topological ball property

for a manifold surface Ω embedded in R3 if: all restricted Voronoi cells (respectively

facets and edges) of S to Ω are closed 2-balls, (respectively 1-balls and points) and

if all restricted Voronoi cells (respectively facets and edges) of S to Ω boundary are

closed 1-balls (respectively points and the empty space) (figure1.8).

The theorem proved by Edelsbrunner et Shah [1997] gives that: for a compact

manifold X ⊆Rd with or without border, and for a finite non-degenerated point set

S ⊆Rd which Voronoi diagram intersects X generically; if S has the topological ball

property for X then the restricted Delaunay triangulation of S to X is homeomorphic

to X. A generalization to non-manifold spaces is also proposed in that paper, it is

however much less used.

Epsilon sampling

Introduced by Amenta et Bern [1999], the ε-sampling theory gives a geometrical

mean to guarantee that a point set has the topological ball property for a surface. Its

definition is based on the medial axis notion. The medial axis of an object is the set

of points that have more than one closest point on the border of the object. The lfs,

for local feature size, is defined by Amenta et Bern [1999] as the minimal (Euclidean)

to the medial axis (or surface of the object)5. A point set S is an ε-sampling of

the manifold surface Ω if for each points x of Ω, there is a point of S at a distance

inferior to ε × lfs(x). When ε < 0.1, Amenta et Bern [1999] show then that S has

the topological ball property for the surface Ω.

The exact computation of the medial axis and so the computation of the lfs is

a complicated problem (see for example Attali et al. [2009]) and remains a research

subject. It is however possible to determine an approximation from the vertices of

the Voronoi diagram of a dense enough point set sampling the object.

5A fist version of lfs was proposed Ruppert [1995].
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1.3 Voronoi diagram optimization

Space subdivision into Voronoi cells determined from sites randomly distributed is

also random, and its optimization appears in numerous statistics, image processing,

or mesh generation problems. The goal is then to optimize site placement to reach

a specific objective, for example, minimize the distances between each one of the

sites and points inside their Voronoi cell. This optimization tends toward a specific

Voronoi diagram: a centroidal Voronoi diagram.

1.3.1 Centroidal Voronoi diagram

The Voronoi diagram of a site set is centroidal if each site is at the centroid p∗ of its

Voronoi cell Vp:

p∗ =

∫
Vp
ydy∫

Vp
dy

(1.2)

When a density function ρ is defined, the centroid becomes:

p∗ =

∫
Vp
yρ(y)dy∫

Vp
ρ(y)dy

(1.3)

Let’s consider the problem of the computation of the partition of a domain Ω in

k regions Ωi and the positions of k points si that minimizes the function:

F ((si,Ωi)i=1...k) =
k∑
i=1

∫
y∈Ωi

ρ(y)||y − si||2dy (1.4)

This function evaluates the sum of the square distance between points si and points

of the region Ωi with the same index. Du et al. [1999] show that, to minimize this

function, it is necessary that the regions Ωi are the Voronoi cells of points si and

that each point must be at the centroid of its Voronoi cell. They also show that this

function has the same minimums than the function:

FCV T ((si)i=1...k) =
k∑
i=1

∫
y∈Vi

ρ(y)||y − si||2dy (1.5)

where Vi is the Voronoi cell corresponding to point si. Function FCV T parameters are

only point positions, the integration being done on the Voronoi cells Vi. To compute

a centroidal Voronoi diagram it is then sufficient to minimize this function of the site

positions. In practice, it is very difficult to obtain a global minimum, and a local

minimum is often considered satisfactory.

Remark : In the same space, for a given number of sites, there are several centroidal

Voronoi diagrams, all of them minimizing the function FCV T .

1.3.2 Centroidal restricted Voronoi diagram

The restricted Voronoi diagram of a point set S to a domain Ω is centroidal if each

site p is at the centroid of its restricted Voronoi cell. A property, similar to the one of

the classical centroidal Voronoi diagram, is established by integrating function FCV T
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Random sites Voronoi diag. RVD RDT

Optimized sites Voronoi diag. RVD RDT

Figure 1.9: Optimization of 100 sites near a sphere. After the optimization, the
restricted Voronoi diagram cells have shapes close to regular hexagons and the restricted
Delaunay triangulation triangles are almost equilateral.

only on the restricted Voronoi cells:

FΩ =
k∑
i=1

∫
y∈Vi∩Ω

ρ(y)||y − si||2dy (1.6)

When points si belong to domain Ω, the centroidal restricted Voronoi diagram is

constrained [Du et al., 2003]. Because we use the sites to subdivide the volumetric

regions and the surfaces of a model, we use non constrained centroidal restricted

Voronoi diagrams. An site optimization example on a sphere is given figure 1.9. After

the optimization restricted Delaunay triangulation triangle are almost equilateral.

1.3.3 Centroidal Voronoi diagram and centroidal restricted Voronoi
diagram computation

To optimize site positions and obtain a centroidal Voronoi diagram or a centroidal

restricted Voronoi diagram the principle is the same than for numerous optimizations:

1. Randomly distribute sites S

2. Build the Voronoi diagram (restricted) of S to the object

3. Determine new site positions S′

4. If a convergence criterion is reached, terminate, else replace S by new sites S′

and go back to step 2.

The question is then to compute the new site positions S′. The classical strategy

is to take the centroids of the Voronoi cells. The resulting algorithm, called Llyod

algorithm [Lloyd, 1982], converge relatively slowly, i.e. many iterations are needed

before reaching any minimum, the site displacement to their optimal positions being

too slow.

Liu et al. [2009] propose to compute a centroidal Voronoi diagram using a Newton-

like algorithm to minimize FCV T and its restricted version. However this optimization



Voronoi diagram optimization 17

needs function FCV T to be C2 it is almost always the case, except in configurations

where two points collide [Zhang et al., 2012] or when a mid plane coincides with

a boundary facet [Liu et al., 2009]. Practice show that Newton-;like methods can

be used to compute a centroidal Voronoi diagram or a centroidal restricted Voronoi

diagram [Liu et al., 2009, Yan et al., 2009, Lévy et Liu, 2010, Merland, 2013].





Chapter 2

State of the art: objective and

generation of meshes

2.1 Meshing and geomodeling

Understanding the three dimensional organization of subsurface rocks is crucial in

fields such as the exploration, the exploitation, and the protection of mineral and

energetic natural resources. Geological modeling, or geomodeling, provides tools to

build and analyze subsurface models. Meshes are fundamental for most part of these

tools.

2.1.1 What is a mesh?

Definition

A mesh is a way to represent an object numerically by approximating it with a set

of simple elements. Take for example the star drawn in the plane and defined by

an infinite number of points (figure 2.1a). By placing ten points on its contour and

by linking these points in an adequate manner, we build a mesh of the star contour

(figure 2.1b) or of its interior (figure 2.1c).

In a more general case, the mesh of an object is defined by a set of vertices and

a set of elements linking these vertices. To have a valid mesh, these elements must

Figure 2.1: One star mesh. (a) Star defined by an infinite number of points. (b) Mesh of
the star border line with 10 vertices and 10 segments. (c) Mesh of the interior of the star
with 8 triangles.
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Figure 2.2: Invalid and non-conformal meshes. (a) Invalid mesh, two segments inter-
sect. (b) Valid non-conformal mesh.

enforce three conditions: the union of all elements is an approximation of the object,

the interior of each element is not empty, and the intersection of the interiors of two

elements is empty [Frey et George, 1999]. The meshes of figures 2.1b, 2.1c and 2.2b

are valid while the one on figure 2.2a is invalid. Segments linking two vertices are the

elements of dimension 1. The elements of dimension 2, the facets, are polygons, the

most simple are triangles and quadrangles. Elements of dimension 3 are polyhedra,

for example hexahedra or tetrahedra, they are the cells of the mesh.

The mesh is conformal if the intersection of two elements is either empty, either

an element common the border of these two elements (figure 2.2c). The mesh is

constrained if some of its elements were imposed at its building, very often elements

meshing the domain boundaries. We say that two meshes are conformal if the mesh

produced by the union of their elements is conformal. For example, the mesh of the

star interior (figure 2.1c) is conformal to the mesh of its contour (figure 2.1b).

Mesh types

A mesh type is defined from the types of its elements and by their connectivity1.

The last determines two mesh classes, structured meshes which have a regular con-

nectivity, i.e. all their vertices have the same number of neighbors, and unstructured

meshes which do not have a regular connectivity. Due to the many options for consti-

tutive elements, the diversity of unstructured meshes is large ; either these elements

are any polyhedra, or their type is known. When all the elements have the same type,

the mesh type name is built from the element name: quadrangular mesh, triangular

mesh, hexahedral mesh, tetrahedral mesh, prismatic mesh, etc. When the mesh is

constituted of elements of different types, it is said hybrid or mixed element.

A simplicial mesh is exclusively constituted of simplices. We recall that a d-

simplex is an element corresponding to the convex hull of a set of d + 1 points of

Rn (d ≤ n) that are affine independent2. The convex hull is defined as the smallest

set that includes these points, i.e. a set that includes all the segments linking each

pair of points of the set. In R3, 0-simplices are points, 1-simplices are segments,

2-simplices are triangles, and 3-simplices are tetrahedra (figure 2.3). In a simplicial

mesh, the advantage is that all its elements are convex and that all its facets are

1The connectivity of an element being defined as the connections between its vertices.
2This excludes configurations where three points are aligned and where four points are coplanar.
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Figure 2.3: Simplices in R3.

planar.

2.1.2 Mesh objectives in geomodeling

Meshes to represent models

As we saw in the previous section, meshes are before all a way to represent objects

with the union of a finite number of bounded simple elements. The object we are

interested in this work are geological structural models delimiting the different sub-

surface rock volumes. There are two main options to represent these models.

Volumetric meshing In a volumetric meshed representation, the regions of the

model are meshed, and each cell is associated to a rock type. The simplest mesh is

a regular subdivision of the model in cubes, which is similar to a 3D digital picture

(figure 3a). As we will see in section 2.1.3, meshes constituted of hexahedra or

tetrahedra are the most commonly used.

Boundary representation In a boundary representation (or B-Rep), the model is

described by the surfaces delimiting its volumetric regions (figures 2.4 and 3b). This

representation has a lighter memory print, is more flexible, and permit to represent

the most part of natural configurations. It is also particularly adapted to structural

models that are generally built from the geological surfaces delimiting rock layers

(horizons, faults, unconformities, etc). The question is then to mesh these surfaces

that are generally triangulated3 [Caumon et al., 2009]. In this work, we only consider

models which surface meshes are conformal (figure 2.5). A consequence is that the

intersections between surfaces can be determined from their geometry.

Meshes to run numerical simulations

In geomodeling as well as in conception, a model is built to answer questions de-

pending on its application domain, for example: How were rock deformed since their

formation? What is the amount of recoverable oil? What is the impact of a tunnel on

a zone stability? Processes modeling mechanical rock deformation, fluid flows, heat

or wave propagation are themselves modeled by partial differential equations, that

cannot be solved exactly (analytically) in the general case, and for which an approx-

imated solution is computed numerically. Since their beginning, numerical solving

3Surfaces as a set of points of coordinates (x, y, z), can also be defined implicitly f(x, y, z) = 0,
parametrically (x, y, z) = σ(u, v), or explicitly z = f(x, y).
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Figure 2.4: Volumetric regions in a B-Rep model. Each region is defined by its
boundary surfaces. Several regions are hidden (see also figure 3).

Figure 2.5: Triangulated surfaces of a B-Rep model. The surfaces defining the
volume of interest are not displayed. Meshes of intersecting surfaces are conformal.
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Figure 2.6: curvilinear grid. Mesh hexahedra are deformed to fit horizons and faults.
The cells that are adjacent to the erosion surface (see figure 3) are degenerated, inactive cells
are created to have a regular grid.

methods have been associated to meshes that are a mean to discretize space [Baker,

2005]. Meshes are a prerequisite for any numerical simulation. Because rock proper-

ties (composition, porosity, permeability, etc) vary inside a model region, meshes in

geomodeling are also used to store these properties.

We will not detail typical geosciences equations. Flow in porous medium equations

are described in Farmer [2005], geomechanical equations and heat propagation in

Turcotte [2002], wave propagation equations in Aki et Richards [2009] and basin

process equations in Mello et al. [2009]. We will not give any detail on the different

numerical resolution schemes for partial differential equations, the reader is referred

to Allaire [2005] and Saad [2003] for a detailed description of the main approaches:

finite difference, finite element, and finite volume.

2.1.3 Volumetric meshes used in geomodeling

If geological model surfaces are often meshed with triangles, volumetric meshes are

more diverse.

Meshes for flow simulations

The most part of meshes in geomodeling are developed for flow simulations in hy-

drocarbon reservoirs, the main objective being to predict hydrocarbon production.

The simplest volumetric mesh is probably a Cartesian grid that subdivides regularly

the model into identical rectangular parallelepipeds (figure 3). On this structured

meshes, finite difference like numerical schemes that are simpler to implement and

very efficient can be used. On the other hand, as all their elements have the same

geometry and the same connectivity, the approximation of the modeled geological

objects is often too coarse to get reliable simulation results.

Curvilinear grids Curvilinear grids, or stratigraphic grids, or corner-point grids,

are regular meshes constituted of deformed hexahedra that are aligned on layers

boundaries, horizons, and faults (figure 2.6). However, in the areas where these

boundaries intersect, cells cannot generally be aligned with them all. Degenerated

cells and/or inactive cells are created, and some geological boundaries are removed
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Figure 2.7: Fold restoration run on a tetrahedral mesh (from Durand-Riard
[2010]). The folded top horizon is restored to its original state - horizontal.

or approximated by stair steps (typically faults). These grids are generally generated

by extruding a quadrangular mesh of one of the horizons, and creating the desired

number of hexahedra layers. They are massively used in an oil exploration-production

context for geostatistical rock property filling and reservoir fluid flow simulations (e.g.

[Farmer, 2005]).

Unstructured meshes Unstructured meshes, for which element connectivity, size,

aspect, and orientation vary, permit to better capture model complicated geometries.

They are not much used for flow simulation, because the matrix resulting of the

discretization do not generally have a regular pattern making them more expansive

to store and to inverse. Nevertheless, recently developed simulators like GPRS [Cao,

2002] and IX [DeBaun et al., 2005], and works on new discretization schemes (see for

example Eymard et al. [2012]) might change that.

Unstructured mesh diversity is very large, we only describe here a selection of the

ones used for flow simulations. Truncated grids are obtained by truncating struc-

tured grids, generally by faults on which the grid is not aligned [Lasseter et Jackson,

2004]. These grids can be refined around specific zones of interest [Sword et al., 2013]

which give them a nice flexibility. Semi-structured meshes, i.e. structured in at least

one direction, are similar to stratigraphic grids. The difference is that the cells are

built by extruding Voronoi cells, triangles, or a mix of several elements, instead of

quadrangles (see for example Lepage [2003]). Modular meshes, directly dependent

on the decomposition of the model in several blocks, the modules, are constituted of

the meshes of these blocks. Regular grids can be used to mesh non-crucial areas, and

to adapt mesh elements in more important areas for the simulation, see for example

Flandrin et al. [2006] and Lepage [2003]. The difficulty is then to generate the mesh

linking the modules. The last important type of unstructured meshes is the grid

constituted of any convex polygons, see for example Merland [2013].

Meshes for other applications

For other applications than reservoir simulation, the diversity of meshes is much more

limited. A great part of mechanical, heat, wave propagation problems are solved using

finite element type methods. Meshes are often simplicial meshes, because they can
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Figure 2.8: Star approximation quality. Three meshes of the same star are more or less
satisfactory approximations. Hausdorff distance between the initial model and each mesh
(d0 < d1 < d2) indicate that the best geometrical approximation is mesh (c). But its Euler
characteristic is not correct because one segment is missing. The topology of meshes (a) and
(b) is correct but approximation is not good for mesh (b).

represent any geometry. Tetrahedron meshes are used for geomechanical restoration

to check model consistency and understand the evolution of given structures (see for

example Durand-Riard et al. [2011] and Vidal-Royo et al. [2012]), for computing heat

or seismic wave propagation [Lelievre et al., 2012], heat transfer [Liu et al., 2012],

or flows in fracture media [Mustapha et Mustapha, 2007]. They are also used to

implicitly model stratigraphic horizons in the deposit space [Mallet, 2004]. Moretti

[2008] and [Moretti et al., 2006] use a curvilinear grid aligned on horizons and faults

(without any degenerated or inactive cell) for restoration computation. The use of

unstructured hexahedra mesh is limited since it is very difficult to generate them

automatically [Owen et Shelton, 2014].

2.2 Mesh quality and generation challenges

We saw in the previous section that meshes have two main objectives in geomodelling:

(1) represent approximately subsurface models and (2) run numerical simulations on

these models. To have reliable, fast, and robust results the mesh must respect criteria

on the number, the size, and the shape of its elements. In this section, we will see how

these criteria may be contradictory, how the zones where they do can be identified,

and how they can be adequately taken into account in meshing.

2.2.1 Mesh quality

The quality of a mesh is a set of criteria that evaluate its influence on the precision

and the efficiency of the applications by which it is used. For example mesh on

figure 2.8b give a less precise estimation of the perimeter of the star than meshes on

figures 2.8a and c. The optimal mesh is the one which for a given application permit

to reach the desired precision while keeping the number of elements at a minimum.

Model approximation quality

B-Rep model approximation quality is reduced to the approximation quality of its

boundaries. The firsts criteria to measure the fidelity of the representation of an
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Figure 2.9: Hausdorff distance between two lines X and Y. sup(F ) is the superior
bound of F and inf(F ) its inferior bound.

object (model) by a given mesh are geometrical, i.e. evaluate the differences of

geometrical properties between the model and its mesh: distance, normal, curvature,

etc. [Frey et George, 1999]. These differences can either be locally evaluated for each

vertex, edge, or triangle, or globally. Hausdorff distance evaluates the proximity of

two models. For two objects X and Y it is defined as (figure 2.9):

dH(X,Y ) = max {supx∈X infy∈Y d(x, y) | supy∈Y infx∈X d(y, x)}.
Topological criteria evaluate the fidelity of the mesh to the initial model indepen-

dently of its geometry. In a B-Rep models, this means verifying that the connections

between the surfaces are the same and that the topology of each one of the surfaces

is the same. Generally, in computational graphics, stating that two domains have the

same topology means that they are homeomorphic (section 1.2.4). If it is possible

to prove that the result of a meshing algorithm is homeomorphic to a input model

(section 1.2.4), it is, to our knowledge, not possible to actually compute that is is. In

the case where the initial model is meshed, weaker properties may be compared: the

Euler-Poincare characteristic: X= S − A + F , where S is the number of vertices, A

the number of edges, and F the number of facets, or the homology [Boltcheva et al.,

2011]. For example, the star mesh on figure 2.8c is not correct, because its Euler

characteristic is 1, while it should be 0, same as the star contour, a closed line.

Mesh quality for numerical simulations

The influence of a mesh on the precision and the efficiency of numerical simulations

aiming at solving partial differential equations may be important. This influence de-

pends on several factors among which the simulated physical process, the discretiza-

tion method, the geometrical mesh properties (distances, curvatures, angles, etc.),

see Knupp [2007], Berzins [1999] and references therein. Mesh quality is defined by

Knupp [2007] as the characteristics of the mesh that permit that the computations

linked to a numerical simulation are efficient, faithful to the physics, and obtained

at the desired precision. A mesh has a better quality if it brings smaller errors than

another mesh. These errors can be evaluated a priori, by controlling some mesh

properties, or a posteriori, by controlling simulation results.

However by default a priori criteria generally used in meshing, see for example the

review of Field [2000]. The goal of these criteria is to eliminate mesh element that (a

priori) create difficulties for the numerical simulation of a process (that is supposed

isotropic), particularly elements with small or large angles (figure 2.10), and elements
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Figure 2.10: Tetrahedra with an a priori bad quality, from Shewchuk [2012].

with edge sizes outside given bounds.

To conclude, it is is pointless to define the quality of a mesh independently of

any application. This application is related to partial differential equations and to

a numerical scheme, and depending on these, some mesh characteristic might be

desirable or harmful. For some codes the best element are equilateral ones, while

other codes will behave better with anisotropic elements deformed in the preferential

directions of this or that physical property.

2.2.2 Negative effects of model geometry

Thin model sections, highly curved ones, or the ones presenting surfaces intersecting

at small angles are generally incompatibles with a priori mesh quality criteria. A

model with a 16 degree angle between two surfaces must have at least an element in

its mesh with a 16 degree angle (figure 4b).

Dey et al. [1997] define small model features as the model components, or model

component parts, which size is inferior to the one that would permit to build a mesh

satisfying given criteria. As these criteria depend on the application and are not

always clearly defined, the identification of these small features may be complicated

and is often done by the modelers and/or the engineers in charge of the model building

or of simulations [Quadros et Owen, 2012]. To ease the generation of a good quality

mesh, it is however necessary to detect them and take them into account before,

during, or after meshing.

2.2.3 Managing model challenging features

In this section, we are interested in the methods identifying and managing the zones of

a B-Rep model that complicate mesh generation independently of any model surface

representation, any model objectives, or any meshing method. Challenging features

specific to geological structural models will be described in chapter 3.

Pre-identification

The identification of small features of a B-Rep model can be performed using a

measures evaluating surface proximity (distance to median surface), surface border

proximity (distance to medial axis), surface curvature, surface border length, and
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surface curvature [Quadros et Owen, 2012]. Model sharp features may also be chal-

lenging, they are generally already identified in the model, and if it is not the case,

they can be recomputed, see Botsch et al. [2010].

Model complexity can also be evaluated locally based on a subdivision of the

model. Andrle [1996] use varying radius circles to compute an angle measure at

a given resolution and evaluate the complexity of geomorphic lines. Lindsay et al.

[2013] propose to count in each of the cells of a structured grid the number of materials

sampled by this cell and its neighbors. This subdivision principle is also the base of

box-counting methods computing the fractal dimension of an object, see for example

Kruhl [2013].

Model simplification

The most radical solution for complex zone management is undoubtedly to remove

them before meshing, or at least to modify them so that they are less challenging.

In geological modeling, model geometry simplification is often necessary, even if lit-

erature focuses on the crucial problem of rock properties upscaling, see the review

of Durlofsky [2005], and is sparse on this subject, at the exception of research works

on fracture networks [Bourbiaux et al., 2002, Mustapha et al., 2011]. There are a lot

of methods in computer aided design to simplify models and suppress features im-

pacting simulation robustness. Thakur et al. [2009] give a very good review of these

methods. Three strategies seem relevant to structural model simplification, methods

operating on model surfaces, method operating on model volumetric regions, and

dimension reduction methods.

The firsts simplify the model or mesh with local modifications [Shephard et al.,

1998, Sheffer, 2001, Quadros et Owen, 2012]. The generalization of the edge contrac-

tion operation proposed by Garland et Heckbert [1997] allow the grouping of close

vertices, and so some model topology modifications. This strategy was implemented

by Mustapha et al. [2011] to modify the mesh of discrete fracture networks.

The volumetric method proposed by Andujar et al. [2002] use a model recursive

subdivision recursive by an octree. Cells inside and outside the model are flagged,

then the model is rebuilt from the remaining in-between cells. Different octree depths

give different simplification levels. The advantage is that, because the complete model

is considered, the relationships between its different components can be analyzed.

Model dimension reduction is a simplification technique used in computer aided

design. It consists of replacing an object by one of lower dimension. For example, a

cylindrical bar (3D) can be replaced by a line (1D) without a significant impact on

the result of some simulations [Thakur et al., 2009]. Resulting models may be con-

stituted of elements which dimensions vary. Corresponding meshes must be mixed-

dimensional, meaning that they contain elements of different dimensions (figure 1.5c),

e.g. [Robinson et al., 2011]. In geomodeling, faults are modeled with a similar ap-

proach. Indeed faults are volumetric zones where rocks are damaged, but they are

most of the time modeled by surfaces to which are associated specific properties like

transmissibility multipliers [Manzocchi et al., 1999].
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Mesh generation

To account for zones complicated to mesh, the most part of meshing methods rely on

a mesh size function to obtain well shaped elements. This function generally depends

on measures taken during a pre-identification step of the potentially challenging zones,

curvature, normal deviation, distance to medial axis, see for example Frey et George

[1999] and Quadros et al. [2004]. Besides adapting element size and increasing their

number, it is also possible to modify their shape and their type to better capture

model geometry and/or decrease numerical simulation errors. For a same number

of elements, using anisotropic elements can permit to have a better approximation

of a domain and to minimize the error of approximation of a given function on the

mesh. A second possibility is to use elements of different types in different zones of

the model, the third is to use higher degree (curved) elements. Their generation is

however rather difficult, see for example Luo et al. [2004].

Post-processing

When complex zones are neither pre-processed, nor taken into account during mesh-

ing, they can be identified in a final step by evaluating fitting between the elements

and the required quality criteria [Dey et al., 1997]. The advantage is that all possible

complications are detected, but the volumetric mesh must be generated. This mesh

is then iteratively locally modified so that it respects quality criteria. This general

approach is also used by mesh adaptation and optimization methods that modify the

mesh until computational errors are below an admissible threshold [Frey et George,

1999, Loseille, 2008].

2.3 Volumetric meshing with tetrahedra

In the two last sections of this chapter, we review surface and volumetric simplicial

mesh generation methods. We begin by describing the main approaches to generate

tetrahedral meshes, because the fact that the dimension of the object to mesh is the

same than the space dimension in which it is embedded (three) makes them easier to

understand than surface remeshing.

After tetrahedral mesh generation methods, we detail meshing methods more

particularly linked with our work: multi-material model meshing and tet-dominant

mixed-element meshing. About the generation of other mesh type, the reader is

referred to the reviews of Thompson et al. [1999], Frey et George [1999], Baker [2005]

and Farmer [2005].

2.3.1 Tetrahedral meshes

There are many tetrahedral meshing methods, all related to one of the following three

main approaches: octree based methods, advancing front methods, and Delaunay

methods.

Space subdivision

The principle of octree based methods is to subdivide a bounding box of the model

in cells of varying sizes, and build the mesh subdividing these cells (see for example



30 Chapter 2. State of the art

Figure 2.11: Recursive subdivisions of a box containing the star.

Figure 2.12: Patterns to build a mesh from a subdivision. The final mesh is built from
the cell vertices (black dots) and intersection points between the star and the cells (white
dots). To each cell correspond one of the ten triangle patterns. To avoid the creation of
degenerated triangles, close vertices are merged (green circles).
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Figure 2.13: Advancing front meshing principle. (a) The initial front is a mesh of the
domain boundary. A segment is chosen and the optimal point to built a triangle from it is
determined. (b) Front update after triangle building. (c) Front after the building of three
additional triangles.

[Shephard et Georges, 1991]). This subdivision uses a hierarchical tree structure.

A model bounding box is subdivided into eight (four in 2D) cells, then each cell is

recursively subdivided into eight (four) cells, until the stopping criteria is reached

(figure 2.11). This stopping criteria depends on the desired element size and on a

maximal number of intersections between model boundaries and cells. The intersec-

tion of each leaf of the tree with the model boundaries is often limited to have one

connected component. To control cell size variations, depth differences between two

adjacent cells are limited to two, see dotted line subdivisions added on figure 2.12.

Final mesh tetrahedra vertices are the octree cells vertices to which are added the

intersections between cells and model boundary and, if they exist, the initial bound-

ary mesh vertices (figure 2.12). Final mesh tetrahedra (or triangles) are built by

subdividing tree cells following predefined patterns. In two dimensions, there are ten

patterns (figure 2.12); in three dimensions, there are a lot of configurations and more

general strategies to subdivide the octants are implemented.

These methods are relatively robust and reliable [Frey et George, 1999]. They

require to implement strategies to improve mesh element quality near boundaries, for

example merge too close vertices. They do not require model boundary discretiza-

tion, their mesh being a byproduct of volumetric meshing. If the boundaries are

meshed, the final mesh will not be conformal to the input mesh. Recently, octree-type

methods guarantying bounded dihedral tetrahedron angles were proposed [Labelle et

Shewchuk, 2007, Wang et Yu, 2012].

Advancing front

The advancing front method strategy consists in building the mesh element per ele-

ment advancing progressively inside the model to mesh from its boundary (figure 2.13)

[Löhner et Parikh, 1988]. While the meshing front is not empty, an element is built

from one segment of the front (2d) or one triangle (3D). These methods determine

heuristically the points to create and the elements to build. This way mesh elements

have the desired size and shape. Their very construction make them conformal to

model boundaries, and, contrary to octree and Delaunay methods, mesh element

quality is very good along model boundaries. Building one element require to (1)

select an front element according to a specific criterion, (2) determine the optimal

point to build an element which base is this front element, (3) check if an existing

vertex can replace this optimal point, (4) build the element, (5) check its validity
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Figure 2.14: Constrained and refined Delaunay meshes, from Shewchuk [2012].
(a) The Delaunay triangulation of boundary vertices of the object does not contain one of
the segments of the boundary. (b) The Delaunay triangulation obtained by inserting Steiner
points. (c) The constrained Delaunay triangulation contains this segment.

Figure 2.15: Insertion of one point in a Delaunay triangulation, Bowyer-Watson
algorithm, modified from Shewchuk [2012].

and modify the optimal point if not, and finally, (6) update the front. Advancing

front method convergence is not guaranteed in three dimensions, however efficient

strategies can be implemented. For example, NetGen 4 is based on advancing front

[Schöberl, 1997].

Delaunay

The third type of mesh generation methods is based on Delaunay triangulation (sec-

tion 1.1.2). Their principle is to build the Delaunay triangulation of a set of points

and to modify these points and/or this triangulation until the desired quality criteria

are reached, see also George et Borouchaki [1997], Cheng [2013] and the lecture of

Shewchuk [2012]. They are based on the point insertion procedure in a Delaunay

triangulation that keeps it Delaunay (figure 2.15).

Constrained Delaunay methods aim at recovering model boundary discretization

in the generated mesh (figure 2.14a). Model boundary vertices are inserted in the

mesh of a model bounding-box. Then, the delicate step is to recover the bound-

4http://www.hpfem.jku.at/netgen/

http://www.hpfem.jku.at/netgen/
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Figure 2.16: Voronoi-Delaunay optimization meshing principle.

ary elements that are not in the Delaunay triangulation5. Additional vertices are

then inserted until element shape and size criteria are reached [George et al., 1991,

Borouchaki et al., 1997, Shewchuk, 2002a, Si et Gärtner, 2011, Si, 2010]. Softwares

like Tetgen6 and MG-Tetra 7 permit to obtained constrained tetrahedral meshes to

model defined by conformal triangulated surfaces.

The principle of Delaunay refinement methods is to iteratively insert vertices at

the center of circumscribed spheres to the tetrahedra that do not satisfy a given

criteria [Chew, 1997, Shewchuk, 1998, Cheng et al., 2005, Shewchuk, 2002b, Cohen-

Steiner et al., 2004, Rineau et Yvinec, 2007, Si, 2008]. This criteria is often a function

of the ratio between the radius of the circumscribed sphere to the tetrahedron and

the shortest edge length, since it is then proved that, under certain conditions, the

algorithm terminates. These methods guarantee bounds on output tetrahedron di-

hedral angles. The main differences between the algorithms lie in the management

of the object boundaries which discretization is generally modified. Gmsh 8, TetGen,

NetGen and CGAL library 9 implement Delaunay refinement methods. The quality

of the obtained meshes is relatively good, however it is difficult to control the number

of vertices added and the model boundaries are remeshed.

Voronoi-Delaunay optimization

A second strategy to generate Delaunay meshes consists in determining the positions

of all final mesh vertices before building their Delaunay triangulation [Du et Wang,

2003, Alliez et al., 2005a, Tournois et al., 2009, Tournois, 2009, Dardenne et al.,

2009, Lévy et Liu, 2010]. First, a given number of points is distributed to sample

the surface or volume to mesh, then the coordinates of these points are optimized to

minimize an objective function, finally the restricted Delaunay triangulation of the

points to the object is built and gives the new mesh (figure 2.16). This objective

function is derived of the notion of centroidal Voronoi diagram (section 1.3.1) and/or

of the notion of optimal Delaunay triangulation [Chen et Xu, 2004].

The two features distinguishing this approach from more classical meshing meth-

ods is that (1) the number of vertices is fixed and that (2) tetrahedra shape and

5This mesh is then not strictly speaking Delaunay.
6http://wias-berlin.de/software/tetgen/
7http://www.meshgems.com/volume-meshing-meshgems-tetra.html
8http://geuz.org/gmsh/
9http://www.cgal.org/

http://wias-berlin.de/software/tetgen/
http://www.meshgems.com/volume-meshing-meshgems-tetra.html
http://geuz.org/gmsh/
http://www.cgal.org/
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Figure 2.17: Solid slice in a tetrahedral mesh of a diapir model. The mesh of each
region is constrained to the mesh of the triangulated surfaces defining the model. The five
regions were meshed independently with TetGen10.

quality are globally controlled by the objective function. Their computational cost

is bigger than the above described methods. Note that considering the Voronoi dia-

gram, that is a subdivision of the space, bring similarities between these methods and

octree methods. The pattern corresponding to the Voronoi diagram is given by the

dual Voronoi-Delaunay relationship (section 1.1.2). Moreover, like octree methods,

boundary surface mesh can be obtained at the same time than the volumetric mesh

with the restricted Delaunay triangulation to the surfaces (section 1.2.3).

2.3.2 Multi-material model meshing

Geological model represent several rock units, so they are divided in several regions.

The objective is to conformably mesh these regions, the surfaces delimiting them,

and the lines of intersection between these surfaces, i.e. tetrahedra on both sides of

a surface must share the same triangular facet, and triangles neighbors through a

contact line must share the same segment.

With a constrained meshing method, that generates a mesh strictly conformal

to the given discretization of the model boundaries, model regions can be meshed

independently (figure 2.17). Methods that do not generate a constrained mesh are

less robust. Lepage [2003], Prévost et al. [2005] propose to use a modified version of

a Delaunay refinement method to mesh structural model surfaces. The result meshes

are typical of this type of method, they are very refined near model corners.

Methods developed in computer graphics generally do not consider non-manifold

surfaces or multi-material models. Some of them do it explicitly and are developed

for medical applications. Their objective is to generate volumetric meshes from 3D

digital pictures (CT scan, MRI) in order to simulate wave/heat propagation, etc.

Input data is then not a B-Rep model. The method proposed by Sullivan et al. [1997]

is based on a subdivision determined by a grid, the more recent works of Zhang et al.

[2010], Mohamed et Davatzikos [2004] using a similar approach. Delaunay refinement
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Figure 2.18: Local surface remeshing operations.

[Boltcheva et al., 2009, Dey et Levine, 2009], and Voronoi optimization [Dardenne

et al., 2009, Dardenne, 2009] methods have also been proposed.

2.3.3 Tetrahedron-prism mixed-element meshing

In computational fluid dynamic, specific zones of interest, like the layers surrounding

a plane, are meshed by thin layers of prisms or tetrahedra. The most part of the

methods generating these boundary layer meshes use an advancing surface (or ad-

vancing facet) strategy and develop solutions to obtain a valid mesh when the input

surface is locally non-convex or angular (see e.g. [Garimella et Shephard, 2000, Sahni

et al., 2008, Dyedov et al., 2009, Ito et al., 2011]). The volume to fill with prisms is

determined from the boundary of the object and a generally pre-defined height for

prisms. A notable exception is the work presented by Dyedov et al. [2009], where a

face offsetting method [Jiao, 2007] is adapted to biological geometries. This method

produces mixed-element (also called hybrid) meshes of very good quality in which

prism thickness depends on a local feature size measure. Marchandise et al. [2013]

exploit the tubular geometry of blood vessels. Loseille et Löhner [2013] propose to

use local mesh modification strategies to generate prism layers.

To mesh the interior of objects, complementary approaches have been developed.

Garimella et Shephard [1999] refine an isotropic tetrahedral mesh when the number

of tetrahedra between two triangular facets on two opposite sides of the model is

below a given threshold. Luo et al. [2010] evaluate the surface medial axis of the

model boundary to identify its thin sections. Then, to build prisms they duplicate

the triangles from one side of the model.

2.4 Triangular surface meshing

The various possible representations for surfaces (implicit, parametric, discretized)

and the various applications using surfaces to represent objects explain the large

number of surface remeshing methods. Meshing a surface means to generate a valid
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Figure 2.19: Surface remeshing in a parametric space, modified from Geuzaine
et Remacle [2009]. Meshing is performed in the plane for a projection of the 3D surface.

mesh for this surface; remeshing a surface implies that this surface is already meshed

and discretized. In that case, the initial mesh can be modified to obtain a second mesh

that has the desired properties. This iterative modifications, vertex displacement or

operations on the edges (figure 2.18), are done while given quality criteria are not

reached (distance between mesh elements and the input surface, metric to enforce,

etc., see for example [Frey, 2000, Geuzaine et Remacle, 2009, Botsch et al., 2010]).

3D surface meshing has the specificity to consider objects which dimension is

inferior to space dimension. Parametric methods operate on a projection of the

surface in a plane, while direct methods operates in the 3D space. When an adequate

parameterization of a surface is available, parametric methods are undoubtedly the

more robust, because in the plane, Delaunay and advancing front meshing methods

are guaranteed to terminate. However the computation of this adequate projection

can itself be an issue when the initial surface is discretized or not open. It is then

possible to adapt 2D methods such as advancing front [Löhner, 1996, Sifri et al.,

2003, Peyré et Cohen, 2006, Aubry et al., 2011] and Delaunay refinement methods

(section 2.4.2) to 3D surfaces or to use dedicated methods.

2.4.1 Space subdivision

Octree methods

We saw in section 2.3.1 that tetrahedral meshing methods based on space subdivision,

octree or Voronoi based methods generate a mesh of the model boundaries. The

contour of the star (figure 2.12) and the one of the sphere (figure 2.16) are meshed at

the same time than the interiors of these models. Whether it is to mesh surfaces or

volumes, the octree subdivision is the same. Intersection points between the corners,

edges, facets of the cells with the surface (plus some specific points) are then linked

to create edges and loops (contour of the intersection of one cell with the surface)

and to build the final mesh [Shephard et Georges, 1991].

Restricted centroidal Voronoi diagram

For surface meshing methods based on a centroidal Voronoi subdivision, it is the

intersection between the surface and the Voronoi diagram that must be centroidal
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(section 1.3.2). The optimization of the volumetric model subdivision is not necessary.

The result mesh vertices are the optimized sites of the Voronoi diagram (equation 1.6).

These methods permit to generate meshes with an a priori good quality. Du

et al. [2003] define the notion of constrained centroidal Voronoi diagram, where the

sites are constrained to lie on the surface, and produce results of adaptive isotropic

meshing for surfaces defined explicitly by a function f(x, y, z). Alliez et al. [2005b]

remesh triangulated surfaces in the plane using a global parameterization, Surazhsky

et al. [2003] use a local parameterization. Yan et al. [2009], Liu et al. [2009] compute

in the 3D space the intersection of the Voronoi diagram with the model surfaces and

optimize the objective function given by equation 1.6. This approach is generalized in

Lévy et Liu [2010] to manage model sharp features without requiring their previous

identification and control spacing between the sites and the input surfaces, and in

Lévy et Bonneel [2013] to generate anisotropic meshes. Valette et Chassery [2004],

Valette et al. [2008] use a discrete version of Voronoi diagrams to decrease a mesh

resolution and improve its quality.

The main difficulty of subdivision meshing methods is that, a priori, all possible

configurations for the intersections between one subdivision cell and the model do

occur. It is to avoid too complex configurations, that cells are generally subdivided

while intersections do not have a unique connected component, this even permits for

Voronoi based methods to verify the topological ball property (section 1.2.4).

2.4.2 Guaranteed surface meshing

Since their beginning, Delaunay refinement methods have been used to directly mesh

3D surfaces [Chew, 1993]. As for tetrahedral meshing, theoretical work, provide guar-

antees on the topology and/or the final element quality. One part of these methods

consider separately the determination of the mesh vertices, that is nothing else than

a sampling of the surface, and the building of the triangles. This links 3D mesh gen-

eration to surface reconstruction problems [Hoppe et al., 1992, Boissonnat et Cazals,

2000]. It is in this framework that the notion ε-sampling was introduced by Amenta

et Bern [1999], which gives that, when the surface point sampling is dense enough

compared to the distance to the surface medial axis, the points have the topological

ball property for the surface (section 1.2.4). From the topological ball property are

derived works aiming at relaxing the constraints to obtain a good sampling and at

considering more general surfaces. Based on these works, were developed Delaunay

remeshing algorithms with guarantees, see for example [Boissonnat et Oudot, 2005,

Cheng et al., 2007]; more recent papers are particularly interested in implicit surface

meshing [Cheng et al., 2009, Dey et Levine, 2009, Gelas et al., 2009, Dey et al., 2010]

2.5 Discussion

We saw that meshes have two main objectives in geomodeling: represent geological

objects and run numerical simulations; all to understand the organization and the

behavior of subsurface rocks. Meshes are used in a very wide range of domains,

but their generation concerns a more restricted community. Mesh generation require

knowledge about computer science, geometry, computational geometry and numerical

simulation.



38 Chapter 2. State of the art

Figure 2.20: David model meshed by Valette et al. [2008] and a synthetic salt
diapir model.

Methods developed by the computer graphic and computational geometry com-

munities are generally to model surfaces. The objectives of meshing methods devel-

oped for numerical simulation are to obtain rapidly reliable, precise enough results.

In geomodelling, if the first objective is to represent and model the interfaces between

rock volumes, the second one cannot be ignored because the goal is to simulate the

real behavior of these rocks. From a topological point of view, surfaces considered in

computer graphics are more simple than geological structural models, they generally

are manifold and do not have any boundary; they are however more complicated

from a geometrical point of view, because they can be highly curved (figure 2.20).

Similarities are more important with the models studied in computer aided design11.

11CAD is indeed part of the geomodeling software Gocad.
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Contribution: Elements for

measuring the complexity of

structural models

A paper corresponding to this chapter is in preparation. Guillaume Caumon, Charline

Julio, Pablo Mejia and Arnaud Botella collaborated to this research.

Abstract

In this chapter, we propose to analyze geometrical sources of complexity in struc-

tural models at a given level of detail. We do not define an absolute complexity

criterion, but describe systematically the elements that contribute to the complexity

of a structural model using connectivity and geometry measures of the model com-

ponents (regions, surfaces, lines, and corners). The proposed metrics are computed

for a set of 9 synthetic models.

3.1 Motivations

The terms structurally complex, are often mentioned to qualify models built or an-

alyzed with this or that method. However the notion of complexity, as something

that is difficult to understand, difficult to realize, or simply unusual, is highly sub-

jective. It depends on the person that says so, on her education, on her experience,

on her means, and, above all, on the problem to solve. Depending on the application

domain, the point of view on structural model complexity varies a lot. A structural

geologist could consider complex the inverse reactivation of normal faults [Sassi et al.,

1993], while this would be less important to a reservoir engineer who would consider

complex reservoirs where fault networks and fractures have a preponderating control

on hydrocarbon trapping and production [Jolley et al., 2007].

This subjectivity of complexity makes difficult the comparison of structural mod-

els, making more difficult the comparison of methods developed in geomodeling,

comparisons that are nonetheless crucial in research. In this chapter, we restrict

our point of view to the structural model complexity from a meshing perspective (a

step common to the most part of geomodeling applications) and we try to give ele-

ments evaluating the relative complexity of two models, estimate the minimal mesh



40 Chapter 3. Geometrical complexity

Figure 3.1: Structural model elements. The model has 4 layers A, B, C, D) delimited
by 3 horizons (h0, h1, h2) and cut by one fault F. (a) Layer B is split in 2 regions B.1 and B.2.
(b) Horizon h1 has two surface connected components, that we call surfaces. (c) The fault
has 4 surfaces numbered 1 to 4. Each surface is delimited by 4 lines, themselves delimited by
corners. The red line is on the border of one surface only, that is F4.

size for a model, and identify problematic zones of the model for a given resolution.

Complexity is then linked to the geometry and to the model level of detail on which

depends the feasibility of a mesh with locally or globally defined element sizes.

We saw several measures developed to characterize model complex zones for vari-

ous applications in section 2.2.3. Some authors even propose geometrical complexity

computation [Quadros et al., 2004] or hex-mesh generation complexity evaluation

[White et al., 2005]. After analyzing the geometrical complexity sources in geolog-

ical models (section 3.2), we propose global and local measures of this complexity

(section 3.3) and evaluate them on synthetic models (sections 3.4 and 3.5).

3.2 Sources of complexity

Before giving sources of complexity in a model, we define the vocabulary used in this

thesis. We consider independently the connected components of all the model com-

ponents: regions, surfaces, lines, and corners. Each volumetric region is completely

defined by the set of surfaces constituting its boundary (figure 3.1). These surfaces

are themselves defined by their boundary, lines that are either at the intersection of

several surfaces, or that are on the boundary of only one surface. Open lines are

delimited by two points that we call corners. Each region, surface, line, or corner

corresponds to a unique geological entity, while one geological entity can be divided

into several regions, surfaces, lines, or corners (figure 3.1). To have a valid model,

its elements1 must intersect only along their boundaries and the elements that have

the same dimension must have the same geometry on these boundaries (their meshes

must be conformal) .

1Also called components in this thesis.
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Figure 3.2: Some sources of complexity in structural models. The juxtaposion
diagram (f) is a view on the fault surface of the traces of the horizons cut by this fault.

3.2.1 Number of geological features

The complexity of a model mainly depends on the number of continuous layers it

contains and on the number of discontinuities affecting these layers. During model

building, the consistency of each one of these features must be checked, having a

direct impact on modeling time. The number of volumetric regions (one per layer

and per fault block) also often determines the number of stationary regions to be

used in petrophysical models, hence the effort needed for geostatistical inference and

modeling. Because each feature may correspond to localized petrophysical contrasts

and induce a compartmentalization of the domain, it often has a first-order impact

on flow and geophysical processes.

3.2.2 Interactions between features

The distribution inside the model of geological features, that is their the density,

has a direct impact on the modeling, gridding and simulation steps. This density is

linked to the geometry of the features but also to the intersections between the model

layers, faults and unconformities. Simpler elements have only a few interactions with

the other model elements, they can more easily be removed or be modified than those

like discontinuities that potentially intersect a lot of elements.

Conformable layers

Conformable layers2 may be challenging if one of them locally has a very small thick-

ness. Indeed, in that case, the layer validity, i.e. non-crossing top and bottom

horizons, is generally more difficult to check (figure 3.2a). Moreover deformations

affecting layers may modify their thickness and horizon curvatures. Structures such

as overturned folds (figure 3.2b) are more difficult to model than simple folds since

2Layers resulting of continuous sediment deposits
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they cannot be represented as single value height fields, which can be problematic

for some applications [Farmer, 2005].

Stratigraphic unconformities

The vertical relationships between layers are controlled by unconformities (erosions,

onlaps) which are very common in stratigraphic reservoirs but are difficult to char-

acterize from the data and require more complex modeling steps than continuous

sequences (figure 3.2c). The determination of their exact position is often not well

known [Caumon, 2003, Lallier, 2012]. as we saw in chapter 2. Their geometries often

imply very thin objects and very small contact angles that are particularly challenging

for meshing methods.

Faults

Faults are discontinuities inducing a displacement of the layers localized along a

surface (figure 3.2d). They are often difficult to characterize from subsurface data

and introduce significant complexity due to their connectivity, shape and specific

properties [Jolley et al., 2007]. In all faulted configurations, the presence of possibly

noisy data calls for a quality control step to validate the fault slip, for instance by

analyzing the fault cutoff lines through an Allan (or juxtaposition) diagram (Fig. 3.2e)

[Groshong, 2008, Caumon et al., 2009]. Juxtaposition of rocks having different flow

properties is also very important for flow purposes because it leads to strong non-

linearities of the flow response to small geometric perturbations [Jolley et al., 2007,

Tavassoli et al., 2005]. Intersections at small angles of fault-horizons contact lines

may introduce difficulties for layer juxtaposition mapping and gridding, and can

affect fault transmissibility. Blind faults raise similar challenges because they stop

in the model and displacement is nil at their tips (figure 3.2e). Unlike surfaces

cutting through the model, they do not separate two regions making some algorithms

unusable as they are.

When considering a fault network, the total complexity is not only a combination

of the individual fault complexities. The more different the average orientations and

dips of the faults are, the more complex the model is. The number of intersections

between the faults and the angles between at these intersections have a major impact

on the approximations required for griding. Horizontal branch lines between faults

(Y-shaped configurations) (figure 3.2f) or strong variations of the orientations and

dip of faults can prevent the easy representation of the model by the extrusion of a

cross-section, or pillar gridding (section 2.1.3) [Farmer, 2005].

3.3 General measures

Two types of measures can be used to evaluate the complexity of 3D structural

model components: connectivity3 measures and geometrical measures. The firsts

characterize the relationships between model components and are independant of the

geometry, the seconds characterize the size and shape of each element.

3Interactions between the model components, also called topology.
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Figure 3.3: Geometrical measure computations in the plane. Thickness measure Ce
and angle measure Ca for a region R and shape measure Cf for one of its boundaries B2.

3.3.1 Global complexity measures

We propose three measures to globally compute the complexity of one model. The

first count the number of model elements (regions, surfaces, lines, and corners) ex-

cluding those defining the volume of interest. This measure gives the same weight to

each component.

To take into account the importance of potential problems due to a given element,

the second measure considers geometrical properties of the elements. This permits

the comparison or two elements from the same model of from two models. Corners

are not taken into account in this measure, however they do have an impact on the

values obtained for the lines and surfaces. We compute each element geometrical

complexity as the sum of four measures characterizing (1) its size Ct; (2) its shape

Cf ; (3) its thickness Ce; and (4) its angles Ca. These measures are chosen so that

they have values between 0 and 1. Size and thickness measures of a component e of

dimension d are defined relatively to a given characteristic size h:

Ct(e) =

{
0 if size(e) > hd

1 else

Ce(e) =

{
0 for lines

Ah
size(Be) for regions and surfaces

where Be is the set of elements on the boundary of e, Ah the size of the zone where

the component thickness is inferior to h (figure 3.3). The shape measure Cf globally

evaluates the line and surface deformation. It is taken equal to 1 minus the size of

the projection of e on its middle line or surface divided by size(e) (figure 3.3). For

regions it is taken at 0.

The angle measure Ca is defined for regions (respectively surfaces) relatively to

a given angle α, its evaluates the percentage of the line length (respectively corner

number) where the angle between two surfaces (respectively two lines) is inferior to

α (figure 3.3).

With the third measure we propose to evaluate the complexity of the elements

of a given type as a statistic on their sizes. We chose the variation coefficient4 that

characterizes the relative distribution of element sizes and evaluates scale changes for

one element type.

4Mean over standard deviation.
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3.3.2 Neighborhood measures

Computing connectivity measures in the neighborhoods of points sampling the model

permits to capture locally model components and to identify more precisely the zones

introducing complexity on the global scale. We saw in section 2.2.3 strategies pro-

posed to analyze model complexity by taking measures in the neighborhoods of points

sampling the model. Such methods require to compute efficiently and robustly the

intersection between the model and the chosen neighborhoods.

To capture spatial relationships between the different elements defining a model,

we propose to locally count the corners, line connected components, surface connected

components, and regions in the neighborhood of points sampling the model. Basic

statistics: mean, variation coefficient, maximum and 90th percentile of these values

evaluate the complexity. Obtained measure values depend on the the sampling reso-

lution, on the position of the points, and on the shape of the chosen neighborhoods.

3.4 Models

We propose a suite of relatively simple models numbered A2 to A6 that are all

derived from model A1, a simple cylindrical anticline composed of three slightly

folded horizons (figure 3.4).

In model A2, two regional normal faults affect the anticline (figure 3.4). These

faults are planar, parallel one to another, cut the whole volume of interest, and have

dips close to 60 degrees toward the East. Moreover, they have a constant total slip,

corresponding to parallel horizon cutoff lines.

In model A3, the regional faults are restricted to an ellipsoid shape and terminate

in the model (figure 3.4). These faults do not compartmentalize the domain and fault

slips vary from a maximum near fault centers to zero at fault tips.

In model A4, one fault is regional while the western fault dies out to the South

(figure 3.4). Fault displacements increase to the North. As a result, horizon cutoff

lines intersect with small angles.

The faults of model A5 intersect along a branch line, resulting in a Y configura-

tion (figure 3.4). Fault slips are regular and the model can be restored to model A1

by rigid block motion. However, the slip on the east fault is close to the thickness of

the top layer, which generates thin features in the Allan diagram.

Model A6 is obtained by cutting model A4 with a topography surface (erosion).

This results in several very small isolated regions and in very small angle contact

between the erosion surface and the eroded layers (figure 3.4).

The three other models illustrate challenges arising in other contexts. Model B

corresponds to a compressive fault-propagation fold (figure 3.5). In the lower part,

the fault has a low dip and branches onto a horizontal décollement level. The thrust

dip changes to a medium angle (ramp) in the upper part and stops in the upper layer

in which the shortening is accommodated by internal layer deformation. Model C

is built from the folded basal horizon of model A1 overlaid by onlapping horizontal

layers deposited at a low angle above it (figure 3.5). The diapiric dome of model D

intrudes and cuts three layers. Except in the intrusion influence area, the horizons

are only slightly deformed (figure 3.5).
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Model A1: Slightly folded layers Model A2: Parallel faults

Model A3: Local faults Model A4: Complex fault displacements

Model A5: Oblique normal faults Model A6: Erosion

Figure 3.4: Suite of models built from model A1. Dimensions : 1600m×930m×500m.
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Model B: Thrust fault (1590m× 915m× 578m)
Model C: Stratigraphic onlap (1600m× 930m×
500m)

Model D: Salt diapir(140m× 140m× 100m)

Figure 3.5: Models leading to potentially problematic configurations.

3.5 Results

We compute the measure proposed in section 3.3 for the nine models presented above.

The components defining the volume of interest (box) are not taken into account,

permitting to characterize the intrinsic model complexity.

3.5.1 Global measures

The first measure that counts the number of elements in the model gives a first

classification of the models, in increasing order: A1, C, D, B, A2, A3, A4, A5, A6

(table 3.1). This classification reflects the number of discontinuities affecting the

models and on their connectivity. Three groups of models can be distinguished:

those with one or no discontinuity (A1, B, C, and D), those with two discontinuities

(A2, A3, and A4) and those with two or three intersecting discontinuities (A6 and

A5). Because the elements on the boundaries are not taken into account, this simple

measure differentiates faults that ends in the model from regional faults that cuts the

whole model.

To compute the second measure we choose a reference resolution of 100m and an

angle α at 20 degrees (table 3.2). The obtained classification A1, C, B, A2, D, A4, A3,

A5 and A6 is slightly different of the first one but extremities are left unchanged. A1

is extremely simple and A6 and A5 are the most complex. The increased complexity

of D is due to the fact that the scale of this model is significantly smaller, and its

bottom region is almost completely subscale. Model A3 is the third most complex

model because of the high complexity introduced by the faults ending in the model.
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A1 A2 A3 A4 A5 A6 B C D

Regions 4 12 4 8 12 14 5 4 5
Surfaces 3 23 16 23 31 42 8 4 6
Lines 0 13 24 22 30 44 4 1 2
Corners 0 0 12 6 10 15 0 0 0
Total 7 48 56 59 83 115 17 9 13

Table 3.1: Number of elements.

A1 A2 A3 A4 A5 A6 B C D

Regions 0.13 0.59 0.22 0.34 1.19 6.58 0.35 0.55 2.97
Surfaces 0.03 3.21 12.01 7.41 9.30 12.58 0.25 0.00 1.20
Lines 0.00 0.01 0.56 0.10 4.01 2.92 0.00 0.00 1.62
Total 0.16 3.81 12.79 7.85 14.50 22.07 0.60 0.55 5.79

Table 3.2: Sum of the geometrical complexity measures (Ct + Cf + Ce + Cα) .

The fault cutoff lines intersect at angles inferior to 10 degrees.

The third measure (table 3.3) gives a third classification: A1, D, B, C, A2, A4,

A3, A5, A6 which is similar to the previous ones. Its meaning is however different

since it identifies complexity sources due to scale variations in the models.

3.5.2 Local measures

Method

To determine the neighborhoods in which measures will be computed, we use the cells

of the centroidal Voronoi diagram of a given number of sites (sections 1.1.1 and 1.3.1).

The cells define a model subdivision relatively isotropic and less sensitive to a certain

orientation like Cartesian grids.

Local connectivity measures

These measures were computed for three numbers of cells: 1 000; 10 000, and so

at three resolutions, the resolution being the cubic root of the volume of the model

divided by the number of points. For A, B and C models these resolutions are

respectively 1980m, 919m, and 427m; model D is smaller and the corresponding

resolutions are 265m, 123m, and 57m.

A1 A2 A3 A4 A5 A6 B C D

Regions 0.74 0.76 0.74 0.84 1.08 1.67 0.57 0.94 0.54
Surfaces 0.00 0.93 1.97 1.41 1.74 1.62 0.79 0.71 0.56
Lines 0.01 0.63 0.67 0.82 1.06 0.00 0.13
Total 0.74 1.71 3.35 2.92 3.64 4.35 1.37 1.65 1.23

Table 3.3: Variation coefficients of element sizes type by type.



48 Chapter 3. Geometrical complexity

A1 A2 A3 A4 A5 A6 B C D

100

Q10 1 1 1 1 1 2 3 1 3
Q50 5 5 5 5 5 7 5 5 5
Q90 7 11 10 11 11 12 7 8 6
Max 7 15 15 16 30 22 8 8 9
Mean 4.300 5.950 5.210 5.630 5.510 6.710 4.290 4.040 4.060
Var.Coeff. 0.547 0.630 0.658 0.665 0.775 0.696 0.390 0.593 0.390

1000

Q10 1 1 1 1 1 1 1 1 1
Q50 1 3 1 3 3 3 3 1 3
Q90 5 7 5 7 6 7 5 5 5
Max 7 15 13 14 22 19 6 8 6
Mean 2.500 3.137 2.710 2.960 2.950 3.170 2.630 2.360 2.569
Var.Coeff. 0.751 0.814 0.808 0.804 0.858 0.871 0.523 0.813 0.581

10000

Q10 1 1 1 1 1 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1
Q90 3 3 3 3 3 3 3 3 3
Max 5 11 11 12 19 15 6 6 6
Mean 1.688 1.910 1.746 1.850 1.840 1.920 1.770 1.570 1.760
Var.Coeff. 0.728 0.788 0.755 0.778 0.795 0.827 0.609 0.721 0.676

Table 3.4: Statistics of the number of elements per cell.

Results

The statistics of the number of elements per cell are given in table 3.4. The mean,

maximum, coefficient of variation and the 90th percentile are drawn in a radar chart

(figure 3.6). For a given statistic, the relative classification of the models at the

different resolutions slightly varies specially for the simpler models. However the sep-

aration of the models into two groups is clear for almost all statistics and resolutions:

the simplest models (A1, B, C and D) that have none or one discontinuity and those

with at least two (A2, A3, A4, A5, and A6).

An expected observation is that, when resolution increases, the local complexity

and the differences between models decrease5. The mean is strongly impacted by this

decrease, for example the mean in A5 diminish from 5.51 (100 cells) to 1.84 (10000

cells) that is a loss of 66.6%, the maximum only decrease from 30 to 19 (36.6%). The

maximum characterizes the most complex zone of the model, that is the element which

is contained in the greatest number of elements (typically a corner or a contact line).

According to this criteria obtained classification is: B, D, A1, C, A3, A2, A4, A6,

A5. The 90th percentile is the same for all the models at the highest resolution (the

value 3 corresponds to a cell intersecting a surface part and two regions), but it may

permit to classify the models at lower resolutions. The variation coefficient evaluates

the dispersion of the measures and can also be used as a complexity measure.

The main advantage of these local measures is the possibility to understand the

spatial organization of the complexity and estimate the extension of the zones where

a given method may fail using the number of elements found in a cell. As we can

see on figure 3.7, these cells are those nearest to thin features of the models, thin

layers (model A6), small fault displacement (model A2), small contact angle on a

fault (model A5), contact lines and corners figure 3.7).

5This effect is similar to the support effect in geostatistics [Journel, 2003].
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Figure 3.6: Normalized statistics on the numbers of elements counted in 100;
1 000; and 10 000 Voronoi cells.

Figure 3.7: Complex zones in models A. Cells containing more than six elements are
localized near discontinuities.
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3.6 Discussion

3.6.1 Contributions

In this chapter, we proposed to use general measures to evaluate the complexity of

structural models in order to compare more objectively several models. The metrics

derived from these measures and the proposed benchmark models are important tools

to quantify our perception of a model complexity, that is the configurations that we

find difficult to understand and that challenge the software we use and develop. These

measures are simple, some of them are computed for a given resolution. They help

understanding the complexity induced by each element of a model independently of

its type and to compare several models of the same area at different resolutions.

3.6.2 Perspectives

There are a lot of perspectives for this work. The measures could be used to deter-

mine the necessary resolution to mesh a model [Quadros et al., 2004]. They also could

be combined to evaluate the complexity of a given modeling task. This requires to

perfectly understand the involved methods and algorithms, to consider the represen-

tation of the model (mesh size and quality), and to realize sensibility analysis. These

three facts make difficult the determination of such measures evaluating, for example,

if a given meshing method will permit to reach the desired quality, resolution, and

number of elements for a model.

Additional results on real models and on more synthetic benchmark models cre-

ated to evaluate the impact of a upscaling or a downscaling of the geometry, or the

addition of a geological entity, would permit to refine our measures and to confirm

the impact of identified configurations. Type specific complexity measures could also

give supplementary information. For example, for fault surfaces, the number of cut

layers, displacement distribution, angles between the fault and the horizons, induced

layer contacts, are crucial in geomodeling. To compute the complexity of a fault net-

work, the connections between the different faults and the variations of orientations

are important. For the layers, the number of fault blocks, deformation intensity, and

thickness variations could be considered.

Geometry computations could also be performed in Voronoi cells. This would

permit to locally characterize the complexity independently of the model representa-

tion, basically its mesh quality and resolution, unlike the measures that we compute

that depend on the input model mesh. We could also consider other cells like voxels

or spheres to compute these local measures.
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Contribution : Structural model

surface remeshing at a given

resolution

A paper corresponding to this chapter was published in Computers & Geosciences

[Pellerin et al., 2014], a preliminary version having been presented at the IAMG

annual meeting [Pellerin et al., 2011].

Abstract

In this chapter, we propose a method to remesh the surfaces of structural models

with triangles as equilateral as possible. We use a centroidal Voronoi diagram op-

timization method to place the vertices of the remeshed surfaces. We introduce an

energy to improve site placement along surface boundaries. The mesh is built by ana-

lyzing the intersections between the model and the Voronoi cells. Where the Voronoi

cells restricted to the model surfaces, lines, and corners have a unique connected

component, we build the restricted Delaunay triangulation of the sites to the model.

Where they do not, we build a mesh dual of these connected components. So, if the

final resolution is sufficient, input lines and corners are also lines and corners of the

final model. However, in models where contacts are complex, resolution is often not

sufficient, and instead of a mesh refinement strategy, we propose to simplify model

features. The method is applied to twelve structural models.

4.1 Motivations

The various strategies used to build structural models lead to surfaces that are, most

of the time, defined by triangles [Caumon et al., 2009]. Depending on the modeler’s

choices and on the algorithms used to build the model, mesh quality and resolu-

tion vary significantly. Triangle quality may be very poor1, especially when implicit

horizons are extracted with a marching tetrahedra method. The mesh must then

be adapted to efficiently visualize and modify the model, as well as run simulations,

like restoration [e.g., Dunbar et Cook, 2003], and above all to generate an adequate

volumetric mesh.

1Our goal is to have equilateral triangles.
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As we saw in section 3.2, many configurations are challenging when meshing a

model with an acceptable number of elements of good quality. In this chapter, we

choose to authorize simplifications of the model in order to adapt its resolution and to

give priority to the number and the quality of the remeshed surface triangles. There

are two objectives: remesh the surfaces defining the model and adapt the model

resolution.

The most part of the many surface (re)meshing methods do not allow input

model modifications (section 2.4). Constrained Delaunay or advancing front meth-

ods remesh one by one the surfaces while ignoring the whole model. Methods giving

theoretical guarantees on the final mesh topology and quality do not give any control

on resolution and on the final mesh number of elements (section 2.4.2). When the

input triangle quality is very poor, computing a parametrization to project surface

triangles in a 2D space may be an issue. Octree surface remeshing methods exploit

a voxel subdivision of the model. This 3D subdivision is also used by simplification

methods operating on volumetric model components that locally analyze the relation-

ships between the model components and the subdivision cells (section 2.2.3). We

propose a similar approach combined with a Voronoi diagram optimization remeshing

method and exploit the fact that sites not verifying the topological ball property have

a restricted Delaunay triangulation that is a simplified version of the initial object

(section 1.2.3 and figure 1.5).

4.2 Goals

Input The input of the surface remeshing method we propose is a valid triangulated

B-Rep model. Surface meshes must be conformal.

Result A global remeshing of the model surfaces with triangles as equilateral as

possible. Contact lines between surfaces are remeshed and the surfaces remain con-

formal along these lines. The model is modified when contact lines or corners are too

close (figure 4.1). This functionality allow the automatic adaptation of the model res-

olution. The method was applied on twelve geological structural models (section 4.5).

Principle We use a centroidal restricted Voronoi diagram to adequately place the

final mesh vertices near input surfaces and contact lines (section 4.3). A topological

control allow then the determination of the triangle vertices from the intersections

between the site Voronoi diagram and the model components (section 4.4).

4.3 Model sampling optimization

4.3.1 CVT optimization

First, a fixed number of sites are placed so that they are a good sampling of the

geological model. Each site samples the model in the sense that it represents the

part of the model closest to it than to any other site: its restricted Voronoi cell

(section 1.2.1). The input number of sites then determines the resolution at which

the model will be remeshed, it may be computed from the square root of the model

area divided by the target edge length. We saw in section 1.3.2 that when the
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Figure 4.1: Remeshing a model cut by 200 fractures. Quality of the remeshed surfaces
is improved, three types of challenging intersections (1) slightly crossing fractures (2) almost
intersecting fractures (3) small angle crossing, are remeshed and modified according to the
desired resolution.
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restricted Voronoi diagram is centroidal its restricted Voronoi cells are compact and

that the restricted Delaunay triangulation remesh the model surfaces with almost

equilateral triangles.

4.3.2 Optimization of sites near boundaries

When computing a restricted centroidal Voronoi diagram to a surface that has a

boundary, optimized sites are not on the boundary because the centroid of a cell

intersecting a boundary line is not on this line. To modify this stable position, a

border energy term can be added to the objective function for sites whose Voronoi

cell (Vp) intersects the boundary (B):

FB(S) =
∑
p∈S

[∫
Vp∩B

||y − p||dy

]2

(4.1)

To evaluate this function and its gradient we decompose the restriction of each

Voronoi cell to the boundary (Vp ∩B) into segments (figure 4.2). For each segment,

E = C1C2, we denote
−→
N =

−−→
C2 p.

−−−→
C2C1 and we have FEB = 1/2 ||

−→
N ||2, that is the

square area of the triangle pC1C2 (figure 4.2). The corresponding gradient is:

dFB
dS

(p, C1, C2) =
dFB
dp

+
dFB
dC1

dC1

dS
+
dFB
dC2

dC2

dS
(4.2)

where dFB/dp =
−→
N ×

−−−→
C1C2, the terms dFB/dC1 and dFB/dC2 are evaluated

similarly. The term dC/dS depends on point C configuration. Either C is a vertex

of the initial mesh and the gradient is a null vector, or C is at the intersection of the

bisector between sites p0 and p1 with an edge of an initial triangle and is computed

as:

dC

dS
=

 [p1 − p0]t

[N1]t

[N2]t

−1 [C − p0]t [p1 − C]t

[C − p0]t 0

0 0

 (4.3)

where N1 and N2 are the normals to two planes built so that they intersect along

a line containing the segment C1C2. The proof is given in Lévy et Liu [2010]. To

improve the placement of the sites near boundaries and contact lines we minimize

the objective function F = (1 − α)FCV T + αFB where α is the ratio between the

boundary energy and CVT energy gradient norms.

4.3.3 Implementation

Algorithm 4.1 summarizes the steps to perform the optimization of a given number

of sites over a model Ω. (1) The initial random placement of the sites on the model

surfaces is done using the algorithm given by Lévy et Bonneel [2013]. (2) The com-

putation of the restricted Voronoi diagram is done using the fast parallelized method

also described by Lévy et Bonneel [2013]. (3) The contributions of each cell of the

restricted Voronoi diagram to the objective function and to its gradient is computed

following Yan et al. [2009] for the CVT energy and the above for the boundary term.

The minimization of the objective function F is done with a L-BFGS algorithm [No-

cedal, 1980]. The optimization can be stopped when the norm of the gradient is
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p

C1
C2

Figure 4.2: Integration segments for the computation of the border energy.

Algorithm 4.1 - Optimization of the sites.

Data: a model Ω, the desired number of points n
Result: an isotropic sampling S of Ω
(1) S← initial random sampling of Ω [Lévy et Bonneel, 2013] ;
while minimum not reached do

(2) Compute the restricted Voronoi diagram of S to Ω [Lévy et Bonneel, 2013] ;
(3) Compute F (S) and dF/dS [Liu et al., 2009] ;
Determine the search direction ∆S [Liu et al., 2009] ;
S← S + ∆S ;

end

inferior to a given value. From our experience, convergence is very fast, and in prac-

tice we stop the optimization process after 100 iterations, the input mesh resolution

does not impact the convergence while increased feature density slightly decreases

the convergence. Specific convergence rates are discussed by Liu et al. [2009].

4.4 Mesh building

Once the sites have been optimally distributed, we compute their restricted Voronoi

diagram to the structural model surfaces to determine the vertices and triangles of

the output mesh.

4.4.1 Surface component remeshing

Let’s first consider a (non-geological) model in which the different surface parts do

not intersect and have no boundary: two nested spheres (figure 4.3). The two surface

parts are sampled by 100 sites which optimized positions are between the spheres

(figure 4.4a). To recover the input surface parts, each site is replaced by two vertices,

one for each connected component of the restricted Voronoi cell (figure 4.4b). There

is then one triangle to build for each point shared by three restricted Voronoi cells

(figure 4.3c and 4.4c). The obtained mesh is a dual of the connected components

of the restricted centroidal Voronoi diagram, it is closer to the input mesh than

the restricted Delaunay triangulation (one sphere in this case) where the topological

ball property is not true - section 1.2.4). The multi-nerve theorem gives that, if all

restricted Voronoi cell connected components are contractile, the restricted Delaunay
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(a) (b) (c)

Figure 4.3: Nested spheres remeshing. (a) 100 optimized sites are sandwiched between
two spheres (b) Each restricted Voronoi cell has 2 connected components (c) Dual of the
connected components of the restricted Voronoi diagram (see figure 4.4).

Figure 4.4: Remeshing two close surfaces. (a) 3 sites (A, B and C) are sandwiched
between two close surfaces. Their restricted Voronoi cells have two connected components.
The restricted Delaunay triangulation has one triangle ABC. (b) Each site is replaced by two
points. (c) Triangles A1B1C1 and A2B2C2 correspond to points v1 and v2 that are shared by
three restricted cell connected components.

triangulation it is homotopy equivalent to the input model [Colin de Verdière et al.,

2012].

4.4.2 Line remeshing

Let’s consider now a surface that has a boundary. Similarly to what happens for

surface components, this boundary may not be correctly remeshed when the number

of sites is too small, i.e. when the topological ball property is not true. To remesh

the boundary adequately as many points as there are connected components for the

intersection between its restricted Voronoi cell to the boundary are associated to each

site (figure 4.5). These additional points must be taken into account when building

final triangles. But, because one restricted Voronoi cell may then correspond to

several points, the dual of the Voronoi point is not always a triangles. Polygons that

are dual of Voronoi edges intersecting twice the boundary are to build (figures 4.5c

& d).

The more intersections between a restricted Voronoi cell and model lines, the

more vertices in the final mesh corresponding to this cell. This may lead to configu-

rations where the polygons to build intersect (figure 4.6a). We propose to merge the

points corresponding to one cell connected component if there are more than two.

This makes our method more robust, but at the cost of modifications of the surface
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(a)

(c)

(b)

(d)

Figure 4.5: Remeshing a surface with a boundary. (a) 21 sites sample the star; Voronoi
cells of the white sites intersect twice the boundary, those of the black sites intersect it once
or not at all. (b) Each white site is replaced by two points, one per intersection of the cell
with the boundary (d) Final mesh polygons correspond to restricted Voronoi points shared
by at least one restricted Voronoi cell that corresponds to two points (gray), or to Voronoi
segments intersecting twice the boundary (c).

connections that are questionable from a geological point of view and depend highly

on the optimized site positions. Moreover these modifications depend on the exact

positions of the sites, and a tiny modification of one site coordinates might sufficient

to locally change the performed modifications. It is but these modifications that

allow a control on model resolution in our meshing method.

4.4.3 Corner meshing

The last elements to take into account for geological model remeshing are triple

points, i.e. points defining boundary lines connected components. To recover all the

triple points of the input model, there is no other option than to put one point for

each triple point present in the restricted Voronoi cell. So, to fully reconstruct the

input model, we need to have for each restricted Voronoi cell, one point per triple

point, one point per line connected component, and one point per surface connected

component (algorithm 4.2).

When there are more than one triple point on a connected component of a re-

stricted Voronoi cell to the boundary, i.e. the final resolution is not sufficient, we

choose to not recover all the triple points of the input model and we merge them (fig-

ure 4.6b). When this merging operation is done, the previously described merging is

also performed. This way, each restricted Voronoi cell connected component has 1 or

2 points and the quads or triangles to build with these points do no intersect.



58 Chapter 4. Surface meshing

Figure 4.6: Configurations leading to modifications of the model. (a) The cen-
tralrestricted Voronoi cell corresponds to 3 points (A, B, C) (b) Polygons to build with these
points ABGF and ADEC intersect. The three points are merged in P. (c) Contact lines (black)
cut the cell into 6 connected components. (d) 4 corners (A, B C, and D) are merged in P
because they are connected through boundary segments.

The last modification is the merging of the vertices that correspond to close

features, close meaning that the distance between them is inferior to a specified

input value (figure 4.6c & d). This is a way to make the model easier to mesh and

simplify very small features by removing small fault throws and joining fault tips

close to another fault (figure 4.7).

4.4.4 Implementation

Algorithm 4.3 summarizes the implementation of the mesh building steps. The input

of the method is a restricted Voronoi diagram, a polygonal surface in which each

facet is associated to the triangle and the site from which it was obtained First,

each restricted Voronoi cell and its connected components are determined, then the

vertices to put for each one of them are computed (algorithm 4.2). The last step is

to build the polygons linking these vertices (figure 4.5).

4.4.5 Mesh improvements

The quality of the triangles of the final mesh is completely dependent on the shape

of the connected components of the restricted Voronoi cell. When they are close to

regular hexagons the dual triangles are close to being equilateral, but relatively small

triangular facets might appear on the restricted Voronoi diagram when a Voronoi

point or edge is close to one of the input surface. When such a facet is in the interior

of the surface part it results in a valence three vertex that can be easily removed

(figure 4.8a). When it is on a free boundary, the corresponding triangle is degenerated

and is simply removed (figure 4.8b). When this facet is along a contact (figure 4.9a),

the dual is also a degenerated triangle but a specific processing is necessary to remove

it while maintaining the contact sealed. The procedure is described in algorithm 4.4
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Figure 4.7: Model resolution control. If the surfaces sampled by one cell are close
compared to a given threshold dresolution, corresponding points are merged. (a) The minimal
displacement on the fault dmin is below dresolution and points A and B are merged. Vertical
displacement is canceled in the final model. (b) The minimum distance between the two
surfaces is below dresolution and they are connected in the remeshed model.

Algorithm 4.2 - Output mesh vertex computation.

Data: the restricted Voronoi cell of site i, distance dresolution
Result: set of points remeshing the cell
foreach Connected component CC do

if CC intersects boundary lines then
foreach Boundary connected component BC do

if BC contains corners then
Add one point per corner ;

else
Add a point on the boundary part BC ;

end

end

else
Add a point at the centroid of the connected component CC ;

end

end
(2) Cluster and merge points sampling triple points connected by a boundary line
(figure 4.6b) ;
(3) foreach Connected component CC do

if number of points > 2 (figure 4.6a) then
Merge the points ;

end

end
(4) Cluster and merge the points whose corresponding model parts are close
(dmin<dresolution) (figure 4.6c & d) ;
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Algorithm 4.3 - Output mesh building steps.

Data: the restricted Voronoi diagram of optimized sites S to model Ω
Result: a triangular remesh of the model Ω
foreach i ∈ S do

(1) Compute the connected components of the restricted Voronoi cell ;
(2) Compute the points remeshing the cell ;

end
(3) Build triangles ;

Figure 4.8: Small Voronoi cell dual of degenerated triangles. (a) A triangular
restricted Voronoi cell connected component in the interior of a surface correspond to a
valence 3 vertex. (b) If it is on a free boundary line, the dual triangle is degenerated.

and on figure 4.9

Removing these needle-shaped triangles corresponds to ignoring a small intersec-

tion of the Voronoi diagram with the input surface and can be seen as the result of

the remeshing if the input surface and/or the contacts lines were slightly moved so

that the small facet on the restricted Voronoi diagram disappears.

As we use the Euclidean distance to approximate the geodesic distance (the length

of the shortest path on the surface between two points) when sampling the surfaces

and making some simplifications, triangles of the output mesh might intersect. They

must be identified and the intersections must be resolved by vertex displacements or

edge flipping.

Algorithm 4.4 - Post-processing of degenerated triangles along contact

lines.

Data: Set of triangles T along contact lines
Result: T has no degenerated triangles
foreach triangle do

Compute the sum of its vertex configurations (figure 4.9b) ;
end
while T modified do

foreach chaque triangle do
if configuration == 6 then

Remove one degenerated triangle edge that is on the contact (figure 4.9d) ;
end
if configuration totale == 9 then

Remove the triangle edge linking the two configuration 4 vertices
(figure 4.9c) ;

end
Update triangle configurations ;

end

end
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Figure 4.9: Identification and processing of degenerated triangles. (a) Triangular
restricted Voronoi cell connected components adjacent to a contact line (red) correspond to
degenerated triangles ABC, BCD and CDE (b) The value associated to each vertex identify
its configuration: 4 for the vertices dual of a red cell, 1 for the vertices on the contact, 0 for
the others. (c) Triangle ABC, configuration 9 = 4 + 4 + 1, is removed by merging points B
and C, at their centroid B’. (d) Triangle B’DE, configuration 6 = 4 + 1 + 1, is removed by
deleting edge DE.

4.5 Results for 12 structural models

We have applied our surface remeshing method on twelve structural models described

in table 4.1 and illustrated on figures 4.10 to 4.18. The models are presented in an

increasing meshing difficulty order. This order is subjective, the work on complexity

presented in chapter 3 being posterior to this one. The difficulty to remesh fractured

or faulted models depends on four factors: the number of faults, the number of

intersections between faults, the number of faults terminating in the model, and

throw sizes.

Input mesh sizes vary from several thousand triangles to almost one million trian-

gles. Computation times to optimize the site positions (100 iterations) and build the

final mesh range between 13s and 150s on a 8-core laptop (frequency 1.73GHz). They

depend mainly on the size of the input mesh, on the number of sites (algorithmic

complexity) and on the number of degenerated cases to process (model complexity).

The input and final triangle quality are compared using three criteria: the smallest

angle, the percentage of angles under 30 degrees, and the average triangle quality.

The quality of a triangle is taken as Q = 6S/(
√

3hmax p) where S is the area of

the triangle, hmax the length of its longest edge, and p its half perimeter [Frey et

Borouchaki, 1999]. Note that the output quality of the triangles is neither fixed

beforehand, nor does it depend on the quality of the input mesh. The Hausdorff

distance between the output and input model is computed with the code of Aspert

et al. [2002] and is given in percentage of the boundary box diagonal.
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Dataset Horizons Faults Main challenges Credentials Figures
Coal veins 29 0 Thin layers Courtesy of Gocad figure 4.10
10.2km× 1.3km× 280m consortium
Forward 7 0 Thin layers, Laurent [2013] figure 4.11
110m× 65m× 40m onlaps
Detachment 8 1 Thin layers Courtesy of Chevron figure 4.12
22km× 14km× 7.7km Guzofski et al. [2009]
Leipzig 2 9 Fault network Courtesy of Total figure 4.12
1.2km× 1.2km× 0.4km
Lambda 2 13 Low angle faults Courtesy of Gocad figure 4.12
6km× 4.5km× 1.9km fault throws consortium
DFN 2 200 Fracture relations Courtesy of Gocad figure 4.13
13km× 11km× 4km consortium and 4.1
HC 7 2 Thin layers, Courtesy of figure 4.13
18km× 10km× 10.2km Inverse fault Harvard-Chevron
Cloudspin 3 10 Low angle faults, Courtesy of PDGM figure 4.14
14.7km× 12km× 2km fault throws and Schlumberger
Clyde 4 22 Fault intersections, Confidential figure 4.15
12km× 10.3km× 1.7km fault throws and 4.17
Nancy 7 26 Complex faults, Courtesy of Total figure 4.16
11km× 3km× 1.4km fault throws
Annot 9 3 Thin layers, onlap, Salles et al. [2011] figure 4.18
11km× 5.5km× 2.8km fault throws
Sandbox 8 33 Fault throws Courtesy of IFPEN figure 4.18
3.5km× 3km× 0.5km Colletta et al. [1991]

Table 4.1: Main features and challenges of the 12 remeshed models. Main features
and challenges of the 12 remeshed models

Figure 4.10: Coal veins remeshing. 29 sub-vertical surfaces delimit thin coal veins. 1000
sites are sufficient to remesh the model decreasing the number of triangles from nearly one
million to 35 thousand (see tables 4.1 and 4.2 for details).

In the remeshed models, the most important elements (the biggest) are kept,

but the numbers of surface connected components, line connected components, and

corners do change because of the performed model modifications. Detailed statistics

on the input and output meshes are given in table 4.2.
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Figure 4.11: Forward model remeshing with varying resolutions. Input model
shows 3 three challenges for remeshing, very thin layers, major layer thickness variations and
low-angle contacts between horizons due to onlapping geometries (see tables 4.1 and 4.2 for
details).
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Detachment (22km×14km×7.7 km) Detachment remeshing (15 000 sites) Detachment remeshing (30 000 sites)

Leipzig (1.2km×1.2km×0.4km) Leipzig remeshing (5 000 sites) Leipzig remeshing (10 000 sites)

Lambda (6km×4.5km×1.9km) Lambda remeshing (1 000 sites) Lambda remeshing (10 000 sites)

Figure 4.12: Remeshing results for models Detachment, Leipzig, and Lambda. (see tables 4.1 and 4.2 for details).



Results for 12 structural models 65

DFN DFN remeshing (30 000 sites)

HC HC remeshing (30 000 sites)

Figure 4.13: Remeshing of models DFN and HC. (see tables 4.1 and 4.2 for details).

(a) (b)

Figure 4.14: Cloudspin model remeshing. (a) Input model with very small throw near
fault ends. (b) Output surfaces, remeshing was done with 5000 sites, contact lines are locally
merged (see tables 4.1 and 4.2 for details).
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N

Figure 4.15: Clyde. This model presents complex fault intersections.

(a) (b)

Figure 4.16: Nancy model remeshing. (a) Input model (b) Model remeshed with 10000
sites (see tables 4.1 and 4.2 for details).
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Figure 4.17: Clyde remeshing with 30 000 and 10 000 sites. (see also figure 4.15) and tables 4.1 and 4.2 for details).
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Sandbox Sandbox remeshing (30 000 sites)

Annot Annot remeshing (20 000 sites)

Figure 4.18: Challenging model remeshing: Sandbox and Annot. (see tables 4.1
and 4.2 for details.)

Figure 4.19: Adaptive remeshing of top horizon in Clyde model. A density property
computed from the distance to the triple points of the model ρ(y) = (1−d(y)/dmax)4 was used
to obtain an adaptive remesh of the Clyde model with 10000 sites. Unlike uniform remeshing,
the result depends on the input mesh quality because density is interpolated on it.
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Dataset #Sites #V #T #Surf. #Lines #Corners Angles (deg) Avg qual. Area (m2) Time (s) Haus.dist. Bbox diag.

Min < 30 (%) Sampling Mesh (% bbox diag.) (m)

Veins Input 471337 923286 29 0 0 0.01 22.07 0.55 5.20E+08 11069

1000 19928 35484 29 0 0 1.04 3.46 0.81 5.16E+08 153 33 0.44 11069

Forward Input 10151 13588 46 76 40 0.01 20.21 0.53 6.63E+04 152.847

1000 2457 3400 47 71 35 0.56 3.25 0.82 6.61E+04 12 1 1.45 152.847

5000 7961 12849 46 74 36 1.85 1.00 0.88 6.62E+04 28 1 0.25 152.847

10000 14096 23845 46 77 41 1.30 0.58 0.89 6.62E+04 46 2 0.18 152.847

Detachment Input 61480 109098 50 84 46 7.86 2.19 0.79 3.98E+09 36816.7

15000 25165 44599 50 79 41 2.60 0.50 0.90 3.98E+09 61 3 0.31 36814.9

30000 42219 76514 50 82 44 3.85 0.24 0.91 3.98E+09 85 3 0.12 36814.8

Leipzig Input 9286 11344 188 320 166 0.98 7.54 0.73 1.00E+07 1724.07

5000 8578 11694 186 287 135 4.05 1.61 0.84 1.00E+07 13 1 0.51 1724.07

10000 14911 22281 186 295 143 6.08 0.96 0.86 1.00E+07 23 2 0.79 1724.07

Lambda Input 24528 37553 132 256 177 0.09 15.52 0.62 2.57E+08 7814.07

1000 3416 3711 144 236 147 0.98 8.35 0.73 2.57E+08 20 2 1.17 7814.07

10000 16113 24223 134 242 155 0.57 1.46 0.86 2.57E+08 33 3 0.374 7814.07

DFN Input 7876 7723 435 307 481 0.00 40.70 0.33 1.03E+09 18282.6

30000 38081 62070 435 300 480 1.00 0.88 0.88 1.03E+09 48 3 1.2 18279.6

HC Input 39919 70684 80 140 80 0.12 19.54 0.60 2.39E+09 23083.6

30000 37255 65198 80 141 81 0.78 0.25 0.91 2.39E+09 72 5 0.327 23083.6

Cloudspin Input 18313 30049 97 124 112 0.00 25.59 0.52 8.93E+08 19339.8

5000 10778 16494 91 117 103 0.45 3.52 0.82 8.92E+08 21 3 0.77 19339.7

10000 17725 28725 94 134 124 0.30 2.25 0.85 8.92E+08 29 3 0.6 19339.5

Clyde Input 41355 69343 227 387 303 0.01 20.39 0.56 9.05E+08 15883.8

10000 15551 23367 206 318 244 0.72 2.51 0.85 9.04E+08 38 4 0.79 15883.8

30000 38884 64850 220 354 282 0.15 1.30 0.88 9.05E+08 66 9 0.74 15883.8

Nancy Input 59115 85775 753 1307 774 0.00 25.98 0.50 1.83E+08 13502.4

10000 24840 30445 719 1096 626 0.13 6.88 0.75 1.83E+08 43 21 0.83 13500.9

50000 79087 119309 741 1259 774 0.05 2.53 0.84 1.83E+08 106 49 0.27 13502.3

Annot Input 76204 130403 332 590 300 0.00 20.61 0.56 7.42E+08 12650.5

3000 12737 18253 301 455 212 0.51 5.69 0.77 7.42E+08 40 7 1.02 12650.5

20000 41761 68240 311 522 264 0.55 2.31 0.85 7.42E+08 80 10 0.26 12650.5

Sandbox Input 72927 109267 500 688 713 0.00 21.98 0.53 7.60E+07 4641.93

30000 52498 77688 503 890 897 0.00 1.11 0.85 7.59E+07 93 28 0.64 4641.93

Table 4.2: Remeshing result statistics. For each model, input model and produced results are compared in terms of mesh sizes, numbers of components

(surfaces, lines, and triple points), and quality (minimum triangle angle, percentage of triangles with an angle inferior to 30 degrees, average quality); the

distance between them is measured with the Hausdorff distance.
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4.6 Discussion

4.6.1 Contributions

In this chapter we proposed an automatic remeshing method for the surfaces of struc-

tural models. All surfaces are simultaneously remeshed with triangles as equilateral

as possible. The method operate both locally and globally on the input model, which

surfaces, lines, and corners are remeshed at the same time according to a given resolu-

tion. The counterpart of this automatism is that it is not possible to precisely control

the performed model modifications. The method do no give any formal guarantee

neither on triangle quality, nor on the final model topology. Results are obtained in

less than several minutes on typical structural models. A quality check of the disap-

pearing and appearing elements is necessary for a better evaluation of the results.

Global optimization and local analysis both have clear limitations. Indeed, since

site density is not adapted to the local number of corners or contact lines, very

important modifications may occur in some Voronoi cells. These modifications are

questionable because they depend on the positions of a few sites and may imply the

disappearance of important model elements from a geological point of view.

4.6.2 Perspectives

A first improvement of the method would be to avoid modifications such as the

merging of two corners aligned on a contact line (figure 4.6b). The second would

be to modify the minimized objective function, either by adapting site density to a

distance to the corners and other model elements, or by adding a term to the function

to prevent problematic configurations. Varying site density is already possible, since

the objective CVT function (equation 1.6) includes a density and the method can be

used to generate adaptive meshes such as the one figure 4.19. However, it is difficult

to add terms to the function, the one we propose to drag site closer to line is not

completely satisfactory. We also tried to add a term influencing the distance between

Voronoi vertices and the surfaces, but it failed.

The volumetric subdivision defined by the Voronoi sites is undoubtedly the key

to obtain results with better mesh quality, a better control on mesh size and on the

modifications. There are several common points between our method and the octree

meshing methods, and maybe strategies that they use could be adapted in the cases

where cell intersections with model boundaries are problematic. Instead of a globally

defined density, a local analysis of the complexity of the intersections between the

model and the cells could be used to add or remove sites and locally re-optimize their

positions.



Chapter 5

Contribution: Toward a

mixed-element meshing based

on Voronoi diagrams

This research has been presented as a research note at the IMR [Pellerin et al., 2012].

Abstract

In this chapter we propose a method to generate a mixed-element finite element mesh,

that is made of tetrahedra, triangular prisms, and square pyramids, for a structural

model. This method is the extension in three dimensions of the surface remeshing

method presented in chapter 4. The vertices, edges, facets, and cells of the final

volumetric mesh are determined from the intersections between the Voronoi diagram

cell and the surfaces defining the model. Inside the volumetric regions, the Delaunay

tetrahedra, dual of the Voronoi diagram of sites sampling the model are built. Where

the intersection of the Voronoi cells with the model surfaces has a unique connected

component, the elements built are also tetrahedra. Where these intersections are more

complicated, we introduce a correspondence between the elements of the Voronoi

diagram and the element of the mixed-element mesh and build a volumetric mesh.

The meshes obtained are not valid in the general case and post-processing is necessary.

5.1 Motivations

Finite element volumetric meshing is a prerequisite to compute the restoration of ge-

ological layers [Durand-Riard et al., 2011, Vidal-Royo et al., 2012], wave propagation

[Lelievre et al., 2012], heat diffusion [Liu et al., 2012], or stratigraphy in the deposit

space [Mallet, 2004]. The mesh must then capture the model components that have

an impact on the modeled process. We saw in chapter 3 that the resolution of these

components can be smaller than the desired mesh size making its generation pretty

complicated.

In the general case, the finite element meshes used in geological modeling are tetra-

hedral meshes generated with one of the methods that we presented in section 2.3.

The most robust methods are probably those generating a mesh constrained to a tri-

angulation of the model boundaries. These methods then require a good mesh quality
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of the boundaries. Methods developed for medical applications (section 2.3.2) gener-

ate simultaneously a mesh of the boundaries and the volumetric mesh. This is also

possible with octree type meshing methods (section 2.3).

We propose an Voronoi optimization method (section 2.3.1) that meshes at the

same time the corners, the lines, the surfaces, and the regions of a geological structural

model represented by its boundary surfaces conformably triangulated. The surfaces

are remeshed with triangles as equilateral as possible. Regions are meshed with cells

conformal to the surface remeshes. The thin sections of the models, which definition

depends on the resolution of the mesh to generate, are filled with prisms, pyramids,

and tetrahedra, the others are meshed with tetrahedra only. Using different types of

elements permit to generate less elements of, a priori, better quality.

5.2 Principle

We describe shortly in this section the main steps of the proposed method and the

differences with the surface remeshing method.

Sampling optimization We use a centroidal Voronoi diagram to place sites sam-

pling adequately the model and its surfaces. The positions of the sites are first

optimized to obtain a volumetric centroidal Voronoi diagram (section 1.3.1) then,

the sites sampling the models surfaces are optimized so that their restricted Voronoi

diagram to the model surfaces is centroidal (section 1.3.2). The final mesh resolution

and the zones that are determined thin by the method directly depend on the number

of sites.

Surface remeshing Models surface are meshed with the method described in sec-

tion 4.4. The difference is that here we associate each connected component of each

restricted Voronoi cell to a unique point, this corresponds to an additional simpli-

fication of the model. Moreover, the triangular restricted Voronoi diagram facet or

buttonhole like facets with only two neighbors, are filtered and not considered when

building triangles. When remeshing surfaces, this triangles were deleted during the

post-processing step (section 4.4.5). This would prevent to keep the conformity be-

tween the volumetric mesh and the surface remesh. Once the surfaces are remeshed,

the vertices of the final mixed element meshed are known and will not be modified

anymore.

Correspondence Voronoi diagram - mixed-element mesh We propose to put

in correspondence the cells, facets, edges, and vertices of the Voronoi diagram cut

into several parts by the model surfaces (figure 5.1) with the cells, facets, edges,

and vertices of a mixed element mesh (table 5.1). We consider that the maximum

number of intersection between a Voronoi cell part and the model surfaces is two.

This is not always the case, and it is possible to identify this Voronoi cells and

apply simplifications strategies similar to those proposed to determine the vertices

of remeshed surfaces (section 4.4), so that the number of points in each part of a

Voronoi cell is one or two.
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Figure 5.1: Voronoi cell cut by model boundaries. (a) Model boundaries in a Voronoi
cell. (b) Cut edges. (c) Voronoi cell parts.

Voronoi diag. elts
Intersections

Mixed-elt mesh
connected components

Cell part
0 1 interior vertex
1 1 boundary vertex

2
2 boundary vertices &
1 interior edge

Facet part
0 1 interior edge
1 1 boundary edge

2
2 boundary edges &
1 interior facet

Edge part
0 1 interior facet
1 1 boundary facet

2
2 boundary facets &
1 cell

Vertex 0 1 cell

Table 5.1: Relationship between the mixed element mesh and the model re-
stricted Voronoi diagram elements.

Figure 5.2: Determination of the Voronoi vertices and edges inside a star.
(a) The 5 Voronoi vertices at the extremity of an infinite edge not intersecting the boundary
are outside the star. (b) Propagation along Voronoi edges gives all Voronoi segments and
vertices outside the star. (c) Voronoi vertices and segments inside the star are kept.
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Algorithm 5.1 - Definition of the Voronoi vertices and segments inside

the model.

Data: Voronoi diagram vertices S
Result: Flagged Voronoi vertices and edges as inside or outside the model Ω
(1) All vertices are inside;
(2) Get all Voronoi vertices SE at the extremity of an infinite Voronoi edge not
intersecting Ω, and flag them as outside (figure 5.2a) ;
(3) Build stack P ← SE ;
(4) while P non empty do

v ← top P ;
foreach neighbor n of v do

if nis not outside then
nb ← # of intersections between the edge vn and Ω ;
if nb == 0 then

Flag n outside;
Push n ;

else if nb is even then
Flag n outside;
Push n ;
Flag alternatively inside and outside segments between two
intersections ;

else
Flag alternatively inside and outside segments between two
intersections ;

end

end

end
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Figure 5.3: Prism dual of a Voronoi segment. (a) Three restricted Voronoi cells, A,
B and C to a layer share segment e that is delimited by intersections with the surfaces v1
and v2. (b) Triangles t1 and t2 duals of v1 and v2 determine the six vertices of the prism.
(c) One edge links each pair of vertices corresponding to the same cell. (d) One quad facet
corresponds to each Voronoi facet part containing segment e.

5.3 Volumetric cells building

There are two main steps to build the mixed element mesh. First, the cells to build

are counted (section 5.3.1), then they are build one by one by adding successively

their vertices, edges, and facets (sections 5.3.2 and 5.3.3).

5.3.1 Determining the cells to build

According to the relationship established in table 5.1, there are two types of cells to

build: the ones duals of Voronoi vertices and the ones dual of segments of a Voronoi

edge (portion of the edge between two intersections with the model surfaces). The

first step is to determine the elements of the Voronoi diagram skeleton that are

outside the model, so that the ones inside the model can be found (algorithm 5.1 and

figure 5.2).

5.3.2 Segment dual cells

The first cells to build are those dual of a Voronoi segment e, i.e. a portion of a

Voronoi edge delimited by two restricted Voronoi vertices v1 and v2 (figure 5.3a).

These two vertices correspond to two triangles, t1 and t2, that remesh the model

surfaces, and are two facets of the cell to build (figure 5.3b). Segments linking vertices

corresponding to the same Voronoi cells are added to these triangles (figure 5.3c) and

the facets linking these edges and the triangles (figure 5.3d). Depending on the total

vertex number the cell to build is either a tetrahedra, or a pyramid, or a prism.

Degenerated cells with only three vertices are ignored. All the other segment dual

cells are valid.
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Figure 5.4: Voronoi vertex dual cell with 8 vertices building. (a) Vertex v is
shared by four parts of four Voronoi cells (A, B, C, D), four edge parts, and six facet parts.
(b) To each edge part corresponds on triangle. (c) For each Voronoi facet part that intersect
twice the model surfaces there is one facet (numbers 1, 2, 3, 5). (d) The final cell has eight
vertices, four triangular facets, and four quad facets.

5.3.3 Vertex dual cells

The remaining volumetric cells to build correspond o the Voronoi vertices. As we

saw in section 1.1.1, each Voronoi vertex is shared by four Voronoi cells, six Voronoi

facets, and four Voronoi edges (figure 1.4a). Their dual according to the classical

Voronoi-Delaunay relationship, is a tetrahedra linking the sites of these four cells

(figure 1.4c). When the Voronoi cells intersect the model surfaces we analyze the

polyhedra resulting of the cutting of the Voronoi cells by the surfaces (figure 5.1) to

build the different volumetric elements 1 (table 5.1).

Adding vertices

For each of the four Voronoi cell pieces containing the Voronoi vertex, there is one

or two points to add to the cell. For example, each Voronoi cell piece figure 5.4a

that contains v intersect twice the model surfaces and corresponds to two points (fig-

ure 5.4c). The next step is to choose what are the points to add to this specific cell,

1Because the computation of these polyhedra is difficult and not robust, cells are built from
Voronoi diagram and the restricted Voronoi diagram to the model surfaces.
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Figure 5.5: Vertex definition of a Voronoi vertex dual cell.

as there might be more than two. All the points corresponding to each (complete)

Voronoi cell were determined at the surface remeshing step. We determine the ones

that can be reached by propagating along Voronoi edges from vertex v (cell A, fig-

ure 5.5). This is unnecessary when a unique point is associated to the Voronoi cell,

either because the intersection between the cells and the surface is empty (cell B,

figure 5.5), or because it has only one connected component (cell C, figure 5.5).

Adding edges

There are two types of edges to add, those linking points corresponding to the same

Voronoi cells bold edges on figure 5.4c, and those corresponding to Voronoi facets

containing v. Facets 1, 2, 3 and 5 on figure 5.4a correspond to two edges numbered

1.1, 1.2 on figure 5.4b; facets number 4 and 6 intersect but once the model surfaces

and correspond to a unique edge in the cell to build. Edges are not always correctly

determined: typically when the Voronoi facet does not intersect at all the models

surfaces and when one of its two neighboring cell correspond two several points. It

is not possible to determine from which points the edge should be built (figure 5.6).

This edge is flagged undefined.

Adding facets

The facet to add first are those corresponding to edges containing v. Either they

are triangles remeshing model surfaces (figure 5.4b), or they are polygons built from

the edges corresponding to the facets that contains the Voronoi edges. The other

facets to add correspond to Voronoi facets containing v and intersecting twice the

model surfaces, for example facets 1, 2, 3 and 5 on figure 5.4c correspond to Voronoi

facet with the same number on figure 5.4a. They are determined from the edges

corresponding to those facets, figure 5.4b. One facet may have up to six vertices, and

six edges. If one edge is undefined, the faced is flagged undefined too.

5.4 Invalid cell processing

Once all vertices, edges, and facets have been added to the cell, its type is determined

from the number of these elements. Theoretically, one cell may have four to eight

vertices, six to sixteen edges, four to ten facets, each facet having up to six vertices.
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Figure 5.6: Configuration leading to an undefined edge in 2D. Potential vertices
for the cell dual of v1 are: A, B, D1 and D2, and for the cell dual of v2: B, C, D1, and D2.
Because the Voronoi edge (resp. facet) that separates cells B and D do not intersect model
boundaries, the edge linking reliant D and B is undefined.

Really most of the cells are tetrahedron, prisms, or pyramids. The other cells are

processed following the procedures described in the following.

They are first sorted into four categories: (1) the cells to subdivided (cells with 7

or 8 vertices defining a valid volume, for example the one figure 5.4d), (2) undefined

cells (with at least one undefined cell), (3) invalid cells (in which at least one edge

is a diagonal of a facet, or in which two quad facets share more than two vertices,

for example 5-point cells, figure 5.7a, that are quite abundant) and (4) the cells

that belong to non of the above categories. Cells to subdivide are subdivided by

adding a vertex at their centroid and building pyramids and tetrahedra with their

facets. Undefined cells are defined by choosing among the possible edges the one that

damage less mesh quality (angles). This choice made for each edge is propagated to

facets containing it. This strategy may not work when a facet or a cell has several

undefined edges. To compute tetrahedra, pyramids, and prisms from invalid cells,

two steps are necessary. First, all the facets of a cell so that there is an edge, in the

same cell, that is one of it diagonal, are cut in two along this edge. Then the validity

of cell facets must be ensured. Facets with more than four vertices are triangulated

and quad facets that share three vertices with another facet are split (figure 5.7b).

This processing permits to reduce the number of invalid cells, but is not sufficient to

obtain a final valid mesh in all cases.

5.5 Results

We applied this mixed element meshing method to geological and non geological

models. Computational time (between several seconds and several minutes) depends
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Figure 5.7: Invalid cells with 5 vertices. (a) Vertices D correspond to the same Voronoi
cell. Facets ABD1D2 and BCD1D2 share three vertices. (b) Cutting these facets with BD2

results in a tetrahedron plus a triangular facet.

on the number of sites, on the input model number of triangles, on the number of

invalid cells to process. The meshes obtained for models in which layer thicknesses

do no vary significantly and that have smooth boundaries reproduce boundary layer

meshes (figures 5.8 and 5.9). Results for geological model are promising (5.10), thin

layers of the model are meshed with prisms. These zones depend on the resolution of

the subdivision of the model induced by the Voronoi diagram, and so on the number

of sites sampling the model (figure 5.9).

5.6 Discussion

5.6.1 Contributions

In this chapter we propose a method to generate a mixed element mesh (tetrahe-

dra, prisms, pyramids) that should be adequate for finite element simulation from a

Voronoi diagram and its intersections with a the surfaces defining the model. This

automatic method is relatively fast. It permits to build a mesh in which the type of

the element built depends on the local thickness of the region considered. No previous

identification of the thin section of the model is required, they are determined from

the subdivision of the model by the Voronoi cells.

Cell building in thin sections works very well, and Delaunay tetrahedra away of

the model surfaces building does not poses any problem. However, in transition zones

where numerous invalid cells are created, the current version of the post-processing is

not yet sufficient to obtain a valid mesh. On the other hand, because the tetrahedra

built near the surfaces do not link the initial sites but vertices remeshing the model

surfaces, some tetrahedra are inversed and intersect their neighbors. Another problem

is that the volumetric mesh depends on the surface remeshing result and robustness,

that still could be perfected, even if it work already quite well. The potentially

necessary mesh fixes by hand cannot be integrated in the volumetric mesh. Finally

the implemented post-processing for surface remeshing along the border lines would

be difficult to extend in three dimensions.

5.6.2 Perspectives

The current implementation does not account for surfaces that stops inside the model

(typically faults). If it is possible to ensure, for example with a point merging strategy,

that there is no more that two points for one Voronoi cell piece, they could be taken
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Figure 5.8: Mixed element mesh inside a smooth surface. 1 010 sites are optimized
to sample the surface (8 seconds). The final mesh (3 seconds) has 516 tetrahedra (gray), 665
prisms (white) and 507 pyramids (black).



Discussion 81

50 sites 200 sites 1000 sites

Figure 5.9: Three nested spheres meshing at three resolutions. The total number
of sites impacts which layer are thin and meshes with prisms.

Figure 5.10: Mesh of layers with varying thicknesses. (a) Input model (b) Mixed
element mesh generated from 1,000 sites (4,674 tetrahedra, 1,754 prisms, and 335 pyramids).
(c&d) Cross-sections in the mesh: tet (gray), prisms and pyramids (white). (e) Prism layer
meshing the thin sections. (f) Elements obtained from dividing a 8-vertex cell.
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Figure 5.11: Mixed elements mesh of two models with sharp features. Thin
sections are mainly filled with prisms. The top model (’bracket’) mesh is constituted of 593
tets, 215 prisms, 47 pyramids; the bottom one (’impeller’) is constituted of 13, 845 tetrahedra,
195 prisms, 237 pyramids. The meshes are not completely valid.
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into account or simplified. Border lines and corners should also be considered when

remeshing the surfaces, as it is not the case at this moment (section 5.2).

The use of a global subdivision of the model by a Voronoi diagram is beneficial

because all elements built are of rather good quality, and problematic because partly

random. Mesh building in the zones where intersections with the models surfaces

are not those expected is very complicated. For this method to be applicable to real

structural models, it should be possible to evaluate the quality of a given sampling

(and of its corresponding subdivision) for a given B-Rep model and define strategies

to improve it.

Several ideas could be developed to improve the method and generate a valid

mesh. The first is to analyze the model elements intersected in each Voronoi cell

to correctly determine the final mesh vertices and implement merging strategies of

points similar to those proposed for surface remeshing. A second idea is to build

all the easiest cells to build of the mesh, and then to extract cavities around prob-

lematic zones (transition, post-processed contact lines) so that they can be meshed

with a constrained tetrahedralization. The third is to completely change the cell

building strategy, and instead of building a mesh from scratch, to progressively mod-

ify the Delaunay triangulation of the sites by local operations that would permit to

obtain the desired conformal mixed element mesh. This would imply identifying non-

conformity issues to solve and to implement operations to solve these. In all cases,

similarly to surface remeshing, one of the keys of the improvement of the results is

the improvement of the spatial distribution of the sites and an adapted adjustment

of their resolution.





Conclusion

Contributions

In this thesis we proposed strategies to automatically remesh and simplify 3D geolog-

ical structural models. Our strategy is based on a space subdivision determined by

the Voronoi diagram of a set of points sampling the model. These points are placed so

that their Voronoi diagram or their restricted Voronoi diagram to the model surfaces

are centroidal. The main contributions of the thesis are summarized below.

Measures to identify the small geometrical characteristics of geological

models The measures of structural model geometry and connectivity we proposed

will help the future definition of tools permitting a more objective comparison of

geological models at a given resolution. Courting the model components in the cells

of a centroidal Voronoi diagram allow a precise identification of the more complex

zones. The metrics we proposed are computed for a set of 9 synthetic models. This

research work is presented in chapter 3 and a paper is in preparation.

A method to build a surface remesh from a restricted Voronoi diagram

The method permits to conformably and simultaneously remesh the triangulated

conformable surfaces defining a B-Rep model. We propose to authorize input model

modifications to remesh the model whatever the topology and the geometry of the

restricted Voronoi cells. We use a centroidal Voronoi diagram optimization to place

the Voronoi diagram sites which permit to obtain triangles as equilateral as possible

independently of the input mesh quality. This methods is presented in chapter 4 and

has been published in Pellerin et al. [2014], a first version having been proposed in

Pellerin et al. [2011].

A method to build prisms, pyramids and tetrahedra from the skeleton of

a Voronoi diagram and a restricted Voronoi diagram This method is the 3D

extension of the surface remeshing method defining a structural model. The model

volumetric regions are meshed simultaneously by elements conformal to that remesh

of the surfaces. Thin model section, that are identified analyzing the intersections

between the Voronoi cells and the model surfaces, are filled with prisms, pyramids

and tetrahedra, the others are meshes with tetrahedra. We propose post-processing

procedure to improve the final meshes that are generally not valid. A short version

of this project was presented as a research note at the IMR [Pellerin et al., 2012].

This measures and methods were implemented in C++ in two plugins of the mod-

eler Graphite (http://alice.loria.fr/index.php/software.html). The code is

http://alice.loria.fr/index.php/software.html
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available to the members of the Gocad consortium (http://www.gocad.org/w4/

index.php/consortium/consortium) that funded this thesis.

Publications

J. Pellerin, B. Lévy et G. Caumon : Topological control for isotropic remeshing of

nonmanifold surfaces with varying resolution: application to 3D structural models.

In Proc. IAMG. cogeo@oeaw-giscience, sept. 2011.

J. Pellerin, B. Lévy et G. Caumon : A Voronoi-based hybrid meshing method. In

International Meshing Roundtable, Research Notes, oct. 2012.

J. Pellerin, B. Lévy, G. Caumon et A. Botella : Automatic surface remeshing of

3D structural models at specified resolution: A method based on Voronoi diagrams.

Computers & Geosciences, 62(0):103 – 116, 2014.

Perspectives

Beyond the technical improvements perspectives described in the conclusions of the

thesis chapters, we see three main perspectives.

The first is to validate, and possibly adapt, the automatic model simplification on

reference models. This require to evaluate the results obtained for the same model

represented and meshed at different resolutions for a given numerical simulation.

This validation is necessary to define an automatic simplification method of geolog-

ical models for all the possible applications (mechanical restoration, fluid flows in

fractured media, wave propagation, etc).

We already underlined that the key to improve our meshing methods is to improve

the model sampling. This requires to determine what is a good sampling of a model,

this probably includes the identification of the zones that have a high geometrical

complexity. Then strategies should be developed to really improve this sampling. A

centroidal Voronoi diagram optimization takes into account a site density, but it is

difficult to add terms to the objective function. Instead of a Voronoi cell subdivi-

sion, other subdivisions like octree could be used to build the surface and volumetric

meshes, models simplifications staying the same.

Finally, the meshing methods we proposed could be adapted to other problems like

the generation of mixed-dimensional meshes that are necessary when the dimension

of certain model components is reduced [Robinson et al., 2011].

http://www.gocad.org/w4/index.php/consortium/consortium
http://www.gocad.org/w4/index.php/consortium/consortium
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pour les géosciences. Thèse, INPL, Nancy, France, mars 2003. (Cited page 42.)

G. Caumon, P. Collon-Drouaillet, C. Le Carlier de Veslud, J. Sausse et

S. Viseur : Surface-based 3D modeling of geological structures. Mathematical

Geosciences, 41(9):927–945, 2009. (Cited pages 21, 42, and 51.)

L. Chen et J. Xu : Optimal delaunay triangulations. Journal of Computional

Mathematics, 22(2):299–308, mars 2004. (Cited page 33.)



BIBLIOGRAPHY 89

S. Cheng, T. Dey, E. Ramos et T. Ray : Sampling and meshing a surface with

guaranteed topology and geometry. SIAM Journal on Computing, 37(4):1199–1227,

2007. (Cited page 37.)

S.-W. Cheng : Delaunay mesh generation. Chapman & Hall/CRC computer and

information science series. CRC Press, Boca Raton, 2013. (Cited page 32.)

S.-W. Cheng, T. K. Dey et E. A. Ramos : Delaunay refinement for piecewise

smooth complexes. Discrete and Computational Geometry, 43(1):121–166, jan.

2009. (Cited page 37.)

S.-W. Cheng, T. K. Dey, E. A. Ramos et T. Ray : Quality meshing of polyhedra

with samll angles. International Journal of Computational Geometry & Applica-

tions, 15(04):421–461, août 2005. (Cited page 33.)
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R. Löhner : Regridding surface triangulations. Journal of Computational Physics,

126(1):1 – 10, 1996. (Cited page 36.)

R. Löhner et P. Parikh : Generation of three-dimensional unstructured grids by the

advancing-front method. International Journal for Numerical Methods in Fluids,

8(10):1135–1149, oct. 1988. (Cited page 31.)

M. D. Lindsay, M. W. Jessell, L. Ailleres, S. Perrouty, E. d. Kemp et P. G.

Betts : Geodiversity: Exploration of 3D geological model space. Tectonophysics,

594(0):27–37, 2013. (Cited page 28.)

L. Liu, Y. Zhao et T. Sun : 3D computational shape- and cooling process-modeling

of magmatic intrusion and its implication for genesis and exploration of intrusion-

related ore deposits: An example from the yueshan intrusion in anqing, china.

Tectonophysics, 526–529(0):110–123, mars 2012. (Cited pages 25 and 71.)
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York, 2 édn, 2002. (Cited page 23.)

S. Valette et J.-M. Chassery : Approximated centroidal voronoi diagrams for

uniform polygonal mesh coarsening. Computer Graphics Forum, 23(3):381–389,

sept. 2004. (Cited page 37.)

S. Valette, J.-M. Chassery et R. Prost : Generic remeshing of 3D triangular

meshes with metric-dependent discrete voronoi diagrams. IEEE Transactions on

Visualization and Computer Graphics, 14(2):369–381, 2008. (Cited pages 37, 38,

and 100.)

O. Vidal-Royo, N. Cardozo, J. A. Munoz, S. Hardy et L. Maerten : Multiple

mechanisms driving detachment folding as deduced from 3D reconstruction and ge-
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Accounting for the geometrical complexity of geological structural models in

Voronoi-based meshing methods

Abstract: Depending on the specific method used to build a 3D structural model, and on the exact

purpose of this model, its mesh must be adapted so that it enforces criteria on element types, maximum

number of elements, and mesh quality. Meshing methods developed for applications others than geomodeling

forbid any modification of the input model, that may be desirable in geomodeling to better control the

number of elements in the final mesh and their quality.

The objective of this thesis is to develop meshing methods that fulfill this requirement to better manage

the geometrical complexity of B-Rep geological structural models. An analysis of the sources of geometrical

complexity in those models is first proposed. The introduced measures are a first step toward the definition

of tools allowing objective comparisons of structural models and permit to characterize the model zones

that are more complicated to mesh. We then introduce two original meshing methods based on Voronoi

diagrams: the first for surface remeshing, the second for hybrid gridding. The key ideas of these methods are

identical: (1) the use of a centroidal Voronoi optimization to have a globally controlled number of elements of

good quality, and (2) combinatorial considerations to locally build the final mesh while sometimes modifying

the initial model. The surface remeshing method is automatic and permits to simplify a model at a given

resolution. The gridding method generates a hybrid volumetric mesh. Prisms and pyramids fill the very

thin layers of the model while the remaining regions are filled with tetrahedra.

Keywords: B-Rep geological model, centroidal Voronoi diagram, restricted Voronoi diagram, restricted

Delaunay triangulation

Prise en compte de la complexité géométrique des modèles structuraux dans des

méthodes de maillage fondées sur le diagramme de Voronöı

Résumé : Selon la méthode utilisée pour construire un modèle structural en trois dimensions et selon

l’application à laquelle il est destiné, son maillage, en d’autres termes sa représentation informatique, doit

être adapté afin de respecter des critères de type, de nombre et de qualité de ses éléments. Les méthodes

de maillage développées dans d’autres domaines que la géomodélisation ne permettent pas de modifier le

modèle d’entrée. Ceci est souhaitable en géomodélisation afin de mieux contrôler le nombre d’éléments du

maillage et leur qualité.

L’objectif de cette thèse est de développer des méthodes de maillage permettant de remplir ces objectifs

afin de gérer la complexité géométrique des modèles structuraux définis par frontières. Premièrement, une

analyse des sources de complexité géométrique dans ces modèles est proposée. Les mesures développées

constituent une première étape dans la définition d’outils permettant la comparaison objective de différents

modèles et aident à caractériser précisément les zones plus compliquées à mailler dans un modèle. En-

suite, des méthodes originales de remaillage surfacique et de maillage volumique fondées sur l’utilisation des

diagrammes de Voronöı sont proposées. Les fondements de ces deux méthodes sont identiques : (1) une opti-

misation de type Voronöı barycentrique est utilisée pour globalement obtenir un nombre contrôlé d’éléments

de bonne qualité et (2) des considérations combinatoires permettant de construire localement le maillage

final, éventuellement en modifiant le modèle initial. La méthode de remaillage surfacique est automatique et

permet de simplifier un modèle à une résolution donnée. L’originalité de la méthode de maillage volumique

est que les éléments générés sont de types différents. Des prismes et pyramides sont utilisés pour remplir les

zones très fines du modèle, tandis que le reste du modèle est rempli avec des tétraèdres.

Mots-clés : modèle géologique défini par frontières, diagramme de Voronöı barycentrique, diagramme

de Voronöı restreint, triangulation de Delaunay restreinte


